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ABSTRACT

The problem of determining optimal estimation and control policies from

noisy measurement data for time-discrete, stochastic, dynamical systems is

considered in this dissertation. The method that is proposed here for the

solution of these problems represents a generalization of the common approach

that is based on the application of linear theory. In applying linear theory, it

is assumed that the state and measurement perturbations of the actual system

relative to an arbitrary system can be described by linear equations. Then,

it is possible to apply well-known linear techniques to estimate the state

perturbations and to determine the desired control corrections. In this

investigation, terms of higher order than first are retained in describing the

perturbations. The determination of estimation and control policies for the

resulting nonlinear systems is then accomplished within the framework of the

so-called Bayesian approach.

The general solution of the estimation and control problems can be

a posteriori density function p(xk/Z_ of the state conditionedestablished if the

upon all past and current measurement data is known. It is not possible to

express this density in a closed-form in most cases, so a principal concern

in this study is with the approximation, rather than the precise determination,

p(__/z_. A general procedure for approximating the densities is proposedof the

and then applied to a specific nonlinear system. For this system, the plant and

measurement noise is assumed to be additive and gaussian. Then, the a

posteriori density is approximated by a truncated Edgeworth expansion that

includes the fourth central moments. Using this form for the approximation,

xi



recurrence relations for the moments of the distribution are developed.

These equations can be simplified in a straightforward manner to yield several

other approximations. This includes a gaussian approximation that is more

general than the results obtained by first assuming a linear model.

The estimation problem was considered in some detail. Techniques are

suggested that allow the range of applicability of linear theory to be consider-

ably extended. This extension is illustrated by numerical examples in which

the estimates obtained from the standard Kalman filter, modified Kalman

filters, and the nonlinear filters are compared. The proposed modifications

are seen to yield significant improvements in many cases. These results

suggest that for many problems it might be fruitful to explore these and other

modified linear techniques before attempting to apply a nonlinear theory.

However, problems do exist that require the use of nonlinear methods. The

approach suggested here leads to results that are reasonable for use with

digital computers and appears to warrant further investigation.

xii



CHAPTER ONE

GENERAL DISCUSSION AND PROBLEM STATEMENT

The Austrian physicist Ludwig Boltzmann is reputed to have once

remarked that "there is nothing more practical than a good theory". Believing

this aphorism to be a worthy engineering watchword, it is the intent in this

study to investigate the problem of establishing estimation and control policies

for stochastic dynamical systems by considering a general theory, namely, the

so-called Bayesian approach. As with many such pithy statements, one or

more words can be subject to diverse interpretation. In Boltzmann's phrase,

the key word would appear to be "good", and we suggest that for many engineers,

it might be defined in the following, almost circular, manner. A theory is good

if it leads to the understanding and solution, either analytically or numerically,

of practical problems. Thus, after formulating the general problem and theory

in Chapters 1 and 2, considerable emphasis is placed upon the application of the

theory and the development of computatiunal a_uL.......... _dm_.

In Section 1.1, the mathematical model and the general problem are

stated and many of the terms and notations that appear throughout the text are

introduced and discussed. Results that have appeared in the literature relative

to the general topic considered in this study are reviewed in Section 1.2. This

discussion can by no means be considered to exhaust the subject. Additional

references appear throughout the text. In the final section of this chapter, the

theory that is proposed here for the solution of the estimation and control prob-

lems is presented. Also, an outline of the contents of Chapters 2 through 8 is

provided.



1.1 THE GENERAL PROBLEM

As has beenstated, the problem of determining estimation and control

policies for stochastic dynamical systems is to be considered. Before stating

these problems, several terms needto be defined.

First, it is important to recognize the precise meaning of "stochastic"

as used here. Certainly, it implies the probabilistic nature of the investiga-

tion but, moreover, we use it to imply that the a priori distributions of all

_random quantities are completely known. In this sense, we follow Bellman

[ 1, 2] who has suggested that a system be called adaptive when parameters of

the distributions are unknown and must be "learned". This is in contrast to

the case in which a parameter of the dynamical system is unknown but has an

a priori distribution that is completely defined. This example would still be a

stochastic problem, although the parameter must be estimated (or learned}.

Only N-stage, time-discrete systems are considered in the ensuing dis-

cussion. In general, the state [3] x k of the dynamical system is assumed to

evolve according to the nonlinear difference equation

x k = fk(Xk_l, Uk_l, Wk_l) k = 1,... ,S (I)

where the state x k is n-dimensional. The p-dimensional vector Uk_ 1 des-

cribes the control parameters that are to be selected according to a prescribed

control law. At each time, the system is disturbed by the random noise Wk_ 1.

k-1
Throughout the discussion, the sequence* w is assumed to have a known

k
* The notation a is used to designate the collection a(ao, a 1 .... ,ak).



probability density p(__...-1)t_and to be independentfrom one sampling time to the

next. That is,

P W(-_'o'Wl' ,.W_k) Df (w__... = p :

Sequences having this characteristic shallbe referred to as white noise

sequences (notto be confused with white noise processes which have a con-

siderably differentcharacter).

The notation that is used follows Fel'dbaum [4-9] and has the disadvan-

tage that the argument of a function serves a dual purpose. Itis used to name

the function (as is done above) and is also treated as a variable name (e.g., it

is treated as the variable of integration). The meaning should be clear from

the context.

The initialcondition for the statex is also a random variable with a
_O

known probability density px(_xo).Note that the probability density is assumed

to exist in this and all other examples. This does not represent a significant

restriction and could be replaced in each instance by the Radon-Nikodym deri-

vative. The x is assumed to be independent of the noise sequences inthe
-o

plant and measurements.

The function f--kin (I)is considered to be known. This relation is fre-

quently referred to as the plant equation and the fixed system that defines f-k

as the plant.

The behavior of the plant is generally observed imperfectly through the

measurement of quantities _ that are functionally related to the state variables

and which contain random errors.

the known relation

These data are assumed to be described by



Zk = hk(Xk, Vk) k = O,1,...,N-I (II)

where z k is a m-dimensional vector. The noise v k is supposed to be a mem-

ber of a white noise sequence with known density P(Vk).

Equations (I) and (II) constitute the basic mathematical model for the

study. Note that equations that are deemed to be of particular importance shall

be denoted with the Roman numeral as has been done for (I) and (II). Arabic

symbols shall be used for equations having a more secondary nature. The

subscripts E and C will be used for equations that are significant for either the

estimation or the control problem, but not both.

It is now possible to give a more explicit definition of the estimation and

control problems.

ESTIMATION: The estimation problem is essentially concerned with the

k+¥
determination of the state x k from the measurement data z The problem

separates naturally into three subproblems.

1) Filtering: estimate x k from all past and current measurement

data zk (i.e., ¥ = 0)
m

2) Prediction: predict x k from past data (i. e., ¥ < 0)

3) Smoothing: estimate x k using future data as well as past and

current data (i. e., y > 0).

All three cases shall be dealt with in the succeeding pages, but the greatest

emphasis is placed upon the filtering problem. In particular, we shall con-

sider the recursive filtering problem in which the estimate _-k shall be based

upon _k-1 and z k.

4



Because of the presence of noise in the plant and measurement equations,

it is, in general, not possible to determine x k precisely from the data zk +Y.

Instead, the estimate _k/k+y must be chosen to approximate x k in some well-

defined sense. Suppose the error in the estimate is denoted as Xk/k+ ¥ and is

defined as

~ WXk/k+y k/k+y

The error criteria that is selected generally has the form of E{_(Xk/k+ _ ]

where _ is positive and spherically symmetric. That is, it is true that

and such that if

then

_a e_a

0 < %0(Xk/k+¥) = _(-Xk/k+ Y)

x ( )
-k/k+y ]Xk/k+¥

.,-_(i) , ~(2)

%0(Xk/k+)) _ ¢P(Xk/k+ _)

Examples of error criteria that satisfy these conditions are:

1) Minimum mean-square error.

For this criteria, the estimate is chosen to cause

E[__T "_ k+y]k/k+¥ Xk/ = minimum.

2) Minimum absolute deviation.

In this case the estimate is chosen so that

[ l k/k+¥1 I = minimum.



It is well-known and will be demonstrated in Section 2.1 that the mean

square error is minimized by choosing_k/k+y to be the mean of the conditional

p(.X_k/k+Y). It is also known [10] that in the scalar case the minimumdensity

absolute deviation is obtainedby choosingthe estimate to be the median of

k+7
p(xk/z ).

For the scalar case, Sherman [11] has pointed out the following lemma.

LEMMA: For the rp defined above and if P is a probability distribution on the

reals which is symmetric and unimodal with mode at the origin so that P(X) =

1 - P (-X) at each continuity point of P and P is convex for X ,_ 0, then

J%(x) dP(X) - a) dP(X)

for each real a, when the integrals exist; if either integral diverges, the one

on the right does.

This implies that for conditional distributions satisfying the conditions of

the lemma, the estimate for error criteria E[r_ (Xk/k+_)] is the same as for

the minimum mean-square error criteria. Thus, estimates based on the latter

criteria can encompass a much larger class then is popularly believed. For

the remainder of this discussion, only mean-square estimates shall be con-

sidered. Thus, the estimates will be selected to minimize

-_ _-T _- (IIIE)_(Xk/k+¥) = E [ Xk/k+ ¥ Xk/k+y]

An additional criteria for selecting the estimate would be to select

_k/k+y as the maximum value of the conditional density function P(xk/k+Y ) .

This is sometimes referred to as the "most probable" estimate and is the mode

of the distribution. Cox [12] has considered this estimate in considerable detail.



It has the disadvantage that there is nonatural measure of error to attribute to

the estimate.

CONTROL: The plant (1)is causedto behavein a particular manner through

N-1
the selection of the control vectors u . The rule according to which the u k

are selected at each sampling time (k = 0, 1 .... ,N-l) is called the control law

for the system. As was true in the choice of estimates discussed above, the

means of establishing the control law is somewhat arbitrary. In the following,

we shall assume that the control is chosen to minimize the expected value of

the performance index

N

V N =_ Wi(x i, ui_ 1) (IIIC)

i=1

The W. are specified functions of the state and control variables and shall be
1

required to be nonnegative and spherically sysmmetric. A familiar example and

one that will be used later is the quadratic index

N

T wXx + T U
VN = _ (xi _ -i Ui-lWi-lUi-1)

i=1

where the ¢ and W Ui-1 are arbitrary, non-negative definite weighting matrices.

k
The behavior of the system is observed through the measurement data z

so the control law is taken as a function of these data. That is, at each sampl-

ing time tk, to g tk a tN_l, the control is computed according to

u k = U k [ ?-Y]

The y has been included to indicate that the control might be based on

past data only. Physical realizability considerations require that y > 0 since

the control could not be expected to depend upon fftture measurements.

7



It would appear that a more general control law could be obtained if u k

were allowed to be a random {rather than deterministic} function of the meas-

urement data. Fel'dbaum considered this possibility and found [5] that the

generalization did not provide any benefit in the cases that he considered.

Sworder [ 13, 14] has shown that it is sufficient to consider deterministic con-

trol laws for Bayesian control policies.

The form of the optimal control law for a given system {I) and perform-

ance index (IIIc) depends upon the nature of the observational information that

is assumed to be available to the controller. The two conditions that are of

greatest interest occur when ¥ = 0 and when ¥ = k. The former results in a

feedback (or closed-loop} control law, whereas the latter leads to an open-

loop control law. In deterministic problems, there is no difference between

the two types of control.

In open-loop control, the entire control policy is established by the

initial conditions whether this is represented by x or measurements made
' _O

prior to the initiation of control. This can be modified to a policy that has been

referred to as an open-loop feedback control law. In this case, the control

policy is computed anew at each t k by treating t k as the initial time and by

ignoring the fact that new data will be available at later times. Open-loop,

feedback control might be expected to produce a policy that is superior to open-

loop control but inferior to feedback control. Dreyfus [ 15] demonstrated that

this intuitive idea is valid for a simple stochastic control problem. Katz [ 16]

shows that the feedback policy provides a lower bound for the value of the

performance index when the systems are time-continuous.

8



A fourth alternative has beensuggestedby Simon [ 17] and has been

called a certainty equivalence control policy. In this case the random variables

are replaced by their unconditional mean values and the problem is treated as

deterministic. This policy has been shown to provide a solution to the stochas-

tic control problem for linear systems containing white noise sequences and with

a quadratic performance index. This situation is discussed in Chapter 3.

The problem of determining feedback control policies is considered in

Chapters 2 and 3.

1.2 PREVIOUS RESULTS

Research into the stochastic control problem has quite naturally taken

two avenues of approach. In the preceding section, the problem has been posed

in terms of a time-discrete system involving difference equations and a finite

number of observation and control times. It could reasonably have been stated

instead in terms of a time-continuous system with a differential equation model

and continuous measurement and control processes. Since dynamical systems

are usually described by differential equations, it could be concluded that this

would be the more natural model. A considerable amount of research effort

has been expended in this area. For a summary, see References 18 or 19.

More recent results than those described in the aforementioned references

have been published by Buoy [20], Bass [21], Mortensen [22], and

Fisher [23]. The first two have dealt with the estimation problem, whereas

Mortensen has presented a very general and mathematically sophisticated

solution of the control problem. Fisher considered the estimation problem



from the point of view of approximating the a posteriori density function of a

time-continuous system.

There are advantages and disadvantages to both formulations. The

principal disadvantage of the time-discrete model arises from the fact that, as

has already been mentioned, a dynamical system is generally described by a

system of differential equations. In order to obtain the time-discrete model,

it is necessary to reduce the system to the form described by (I) and this

requirement engenders a problem of considerable significance. On the other

hand, it is believed that the formulation presented in Section 1.1 is more

realistic for several reasons.

(1) Measurement data are usually available only at discrete times.

(2) In many complex systems, the control is determined with the

aid of digital computer so the control is changed at discrete

times.

(3) In the time-continuous case, white noise processes are generally

assumed to act on the plant and measurement process and such

noise is physically unrealizable.

(4) Last, and not least, the general solution of the time-continuous

estimation and control problems yields systems of complicated

partial differential-integral equations that must be solved. The

difficulties inherent in obtaining numerical solutions to practical

problems using this formulation appear to be excessive.

10



When(1)and (II) are linear, the noise is Gaussian, and a minimum mean-

square error criteria and a quadratic performance index are utilized, the

solutions to the estimation and control problem are well-established. There

have been manyworkers in this area, but many of the better known results have

been attributed to R. E. Kalman [24,25,26]. It was suggestedby Kalman and

Koepcke [27] that for linear systems the estimation and control problems

could be considered separately. That is, the estimates canbe computedas

though the control is a knownfunction of time and the control law found for the

deterministic problem canbe used for the stochastic control law. The control

is computedaccording to

Uk = Ak_k

where hk describes the deterministic control law, and _k has replaced x k•

This result has been stated as a "Separation Theorem" andwas first proven

independentlyby Gunckel [28] and by Joseph [29].

For nonlinear systems, an approachthat is commonly used in practice

involves the use of linear perturbation techniques [30]. First, a nominal or

reference solution of (I) is assumedto exist that provides a "good" approxima-

tion to the actual behavior of the system. The approximation is "good" if the

difference 5x betweenthe nominal andactual states canbe accurately described

by a system of linear difference equations

6x k = _k,k_15Xk_l+Fk,k_lUk_ l+Ak,k_ lwk_l

and the difference in the measurements 6 z k is given by

11



6z k = Hk6X k + v-k

This approach has yielded many satisfactory results, but several weak-

nesses have become apparent. For example,

(1) There is no easily obtained criteria for judging the validity of the

linear approximations.

(2) The filter does notbehave satisfactorily when the measurement

noise is small. Pines and Denham [31] have attributed this to the

absence of second order terms in the expansion of the measure-

ment equations.

(3) This procedure lacks generality. It provides little insight into the

techniques for considering more general systems.

It has been suggested by several people that it would be more appropriate

to formulate the problem in terms of the a posteriori density function p_k/zk).

In a series of four papers, Fel'dbaum [4 -7] dealt with the control problem

and derived several basic results. Ho and Lee [32] considered the estimation

problem. Aoki [33] has conducted an extensive investigation of both problems.

These results are contained in his forthcoming book. In an excellent doctoral

dissertation, Sworder [13, 14] has considered the control problem using a

game-theoretic formulation. Stratonovich [34] dealt with the a posteriori

density for time-discrete and time-continuous systems.

P(Xk/zk ) theoretically provides the solution to both theKnowledge of

estimation and control problems. The estimates _k and control u k are

required at each sampling instant so it is necessary to know P(Xk/Z k) for

12



every tk.

according to the recursion relation

It is not difficult to show (see Chapter 2} that P(Xk/Z _ evolves

where

and

p(_xk/zk -1)

P(Xk/Z _ =

k-1

P(Xk/Z )P(Zk/X k)

z /z k-1
P(-k - )

k-1
= ._p(_xk/g )P(_-k/Xk_l,Uk_l ) dX-k_ 1

p(__k/k-l)

The denominator of (IV) does not involve x k

(IV)

constant.

= _p__k/k-1)p(z_k/Xk ) dx_k

and plays the role of a normalizing

The general concept of dealing with the a posteriori density is referred

to as the Bayesian approach to estimation and control. Unfortunately, it is not

possible to solve (IV) in closed form for most problems. (The major exception

occurs for linear systems.) Furthermore, the computational requirements

for solving (IV) numerically become astronomically large for almost any non-

trivial problem. Thus, it becomes apparent that approximations must be intro-

duced that will reduce the complexity of the problem without destroying its

character.

i. 3 PREVIEW OF COMING ATTRACTIONS

Since one must know: P(Xk/zk) before proceeding with the solution of the

estimation and control problems, it is the intention in this investigation to

develop a means of approximating the density. It is believed that a combina-

tion of perturbative and Bayesian techniques will permit the development of a
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theory that is at once more general than the linear theory but more computa-

The procedure that istionally attractive than the general Bayesian approach.

proposed for achieving this meld is described below.

(1) At each sampling time t k, nominal valuest for Xk_ 1, Uk_ 1, and

Wk_ 1 are assumed. Then the fk is expanded in a Taylor Series.

The measurement equation h k is expanded about fk _-1 u*' -k-l'

P(Xk/k) must be assumed. This form is required to(2) A form for

be true for all k.

(3) The a priori statistics for the plant and measurement noise and

the expansions of f-k and h k are introduced into (IV). Only those

terms are retained that yield the desired form for P(Xk/Zk).

The application of this procedure to a system leads to several questions

concerning the resulting approximation.

(1) Does the approximation describe p_k/Z k) accurately enough to

have confidence in the validity of the estimation and control policies

that are subsequently derived7

(2) Does the approximation lead to estimation and control policies

that provide a significant improvement over linear policies7

A question that is related to the preceding one can be phrased in the

following manner.

t nominal values are denoted by the superscript *
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(3) Can special techniques be developed that extend the range of

applicability of linear theory and thereby eliminate the need for

nonlinear considerations in many problems ?

In this study, several specific approximations are developed. Then,

these questions are considered by examining the estimates of the state of a

dynamical system that are obtained from the approximations. This is accom-

plished through digital simulation.

In Chapter 2, the general Bayesian approach is discussed. The solution

of the minimum mean-square estimation problem is shown to be the conditional

mean. Conditions that the control must satisfy for the performance index (IIIc)

to be minimized are derived in terms of the a posteriori density. Then,

equations which describe the a posteriori density p_k/k+¥) (for any integer ¥)

are derived. These results have appeared [33,14, 32,35] before in the litera-

ture. In addition, the relations describing the p(_k/k+¥) are rewritten in

terms of characteristic functions. It has been found in Chapter 3 that the

characteristic function formulation can reduce the amount of algebraic manipu-

lation required in the solution of a problem.

The Bayesian approach is applied to the linear stochastic control problem

in Chapter 3. It is used to obtain the Kalman filter equations [24,30 ], Rauch's

smoothing equations [36], and to prove the Separation Principle. It is seen

from the proof that the Separation Principle is valid because the error covari-

ante matrix for this case does not depend upon the measurement data.
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The procedure stated at the start of this section is applied in Chapter 4

under the constraint that P(Xk/Z_ is Gaussian. It is demonstrated that the

filter equations that are obtained are no_._tthe linear Kalman equations. Instead,

second order terms appear and the conditional covariance becomes a function

of the measurement data. This is a distinct departure from the Kalman filter

in which the conditional covariance is independent of the measurements. It is,

however, characteristic of nonlinear estimates. It is further observed that a

distinct simplification in the filter is obtained by requiring the nominal value

for _k-1 to be _k-l" The control of a linear system with nonlinear measure-

ments is considered, and it is suggested that the Separation Principle is no

longer valid.

The problem of estimating the state of a spacecraft moving in a nearly

circular, 100 nautical orbit about the Earth from horizon sensor measurements

is considered in Chapter 5. A digital computer program simulation was set up

to simulate the physical system and the techniques and results obtained in

Chapters 3 and 4 are utilized. The linear filter of Chapter 3 and the nonlinear

filter of Chapter 4 are compared. In addition, techniques for extending the

range of the linear filter are proposed and used. Several interesting con-

clusions are suggested by these numerical results.

In Chapter 6, attention is restricted to the nonlinear estimation problem.

In this chapter, the a posteriori density is approximated by a truncated

Edgeworth expansion. All considerations are limited to scalar plant and

measurement equations, and approximations retaining third and fourth order
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conditional moments are derived. It is seen that the approximation is achieved

by developing recurrence relations for the moments of the distribution.

The results of Chapter 6 are applied to a simple problem in Chapter 7.

Filters based on a linear theory are exercised and compared with the filters

produced by the approximations. "Modified" linear techniques are also

examined.

The major results and conclusions provided by this study are summarized

in Chapter 8. The contents of each chapter are described in Section 8.1, and

the reader might consult that discussion before proceeding through Chapters 2

through 7.
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CHAPTER TWO

THE BAYESIAN APPROACH

In the so-called "Bayesian approach" to the problems of determining

estimation and control policies for stochastic systems, one is concerned first

of all with the determination of the a posteriori density function P(xk/k+Y).

This density function provides all of the data required for the solution of these

problems. To see that this is indeed the case, the following section shall be

devoted to the solution of the minimum mean-square estimation problem and

the optimal control problem. In this discussion, it is assumed that the nec-

essary density functions are available. The solution of these problems provide

a means for determining "best estimates" and "optimal controllers" if the

P(Xk/z_k+Y } is known. In Section 2.2 it is demonstrated that the a posteriori

density can be determined from the a priori statistics specified for the plant

and measurement noise. Naturally, the functions fk and h k enter these con-

siderations. In the concluding section of this chapter, the relations describing

the a posteriori density are rewritten in terms of characteristic functions.

Reference will be made frequently in this and subsequent chapters to

three properties of conditional density functions [ 37 ].

1. For random variables a and b with joint probability density

function p(a, b_), the conditional density of a, given b, is defined

as

p(alb__) - p(a, b) _:
p(b) (2.1)
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2. For random variables a, bb_, andc_,

p(a, b_l_c)= p(blc) p(alb_, c) (2.2)

This is known as the chain rule.

3. For random variables a, b_, and c,

p(__h) -- _p(__lb_,c) p(b__) db (2.3)

This is the integrated form of the chain rule and represents one

version of the Chapman-Kolmogorov equation.

Note that the definition of conditional densities (2.1) can be rewritten as

p(alb) = p(b_la_) p(a_) (2.4)
p(b_)

This relation is known as Bayes' rule and is the source for the term Bayesian

as used in this and other chapters.

Note that the integration indicated in (2.3) involves vector variables.

The single integral sign will be used for both scalar and vector variables and

db_ will be used to describe the differential dbldb 2. .. dbn. When more than one

vector is involved, the differential will be written as d(a, b,... ,z).

2.1 OPTIMAL ESTIMATION AND CONTROL FOR STOCHASTIC TIME-

DISCRETE SYSTEMS

The mean-square estimation problem and the optimal control problem

shall be solved in this section in terms of the a posteriori density function.

2.1.1 The Minimum Mean-Square Estimation Problem

The solution of the minimum mean-square estimation problem [ 38 ] is

provided by the following lemma.
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LEMMA 2.1: Suppose that a random variable x is to be estimated from the

known variables* zq. The x and z2 have the joint probability density function

p(x, zq). The estimate _¢ is to be chosen as a function of the zq so that
D

^ ifEl(x- x) T - x)] = minimum

Then, the mean-square estimate of _ is

= E[xi q] (VE)

Proof: Write E[(_ - x)T(_ - x)] in terms of the joint density function.

E[(_-x)T(:_-x)].....: ,;(_-x)T(_-x)p(x,zq)d(x,z q) (2.5)

From (2.1), the density function can be written as

z2) = P(x/zq)p(zq)

Thus, (2.5) is equivalent to

E[ (_ - x)T (__ _ x)] = f[_(_ - x)T (__ _ x_)p(_x/zq)dx_ j p(.z_q)dzq

Consider the integral in brackets. Since _ depends only upon the zq,

the integral can be written as

.;(__- x_)T (_ _ x_)p(_x/zq)dx_
^T^

= x x- 2xT Etx/z q] + EtxTx/z q]

= (__ E[x_jzq] )T(_ _ E[x/zq] ) + E[xTx/z q]

- [ E [x__/zq] ] TE [x_Jzq] (2.6)

By definition this quantity is positive, so to minimize E[(_ - x_)T(_- x)], it is

sufficient to minimize (2.6). Only the first term involves _, and the smallest

value that it can assume is zero. Thus, the minimizing estimate is given by

f = E[x/z q] Q.E.D.

* Recall that the set _1' z2'"" ,Zq) is denoted by zq.
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This lemma shows that the conditional mean provides the mean-square

estimate of x. Certainly, if one knows the a posteriori density function
m

p_/z_q), then the estimation problem has in principle been solved. Other

estimates such as those given by the mode or by the median of the distribution

are also established from knowledge of pi_/zq).

The conditional mean provides an unbiased estimate of a variable x.

That is, it is true that

E[x] = E[_].

This is verified in the following manner.

By definition, one has

Eta) = ,F p %dzJ

But _ is the conditional mean, so
m

Eta] = .[[_x_p_./zq)dx_} p_q)dz q

From 2.1, it follows that

EEJ = Iw _,

Integrate with respect to zq. Then,

E[__]= ]'__p_

Df
= E [x]

2.1.2 The Control Problem

N-1
Suppose that a feedback control policy u is to be determined for the

system (I) and (II) that minimizes (HIc). It shall be shown that

LEMMA 2.2: The optimal feedback control policy for the system (I) - (II) and

performance index (IIIc) is the control that causes
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- N-k
E [2_/N_k+l/z ] = minimum

where

_,_-_+1=_,r%-k+_+%___+_)_%__+_-

P(_'N-_ d(-_N-k+l' WN-_

and

1_N_k._ D_r_= ' -k+2 6 (_-N-k+l

(vC)

f-N_k+l )

- hN_k+ I)P(-ZN_k+l )d(Y-N_k+ I,ZN_k+ I)

At the last stage, the/V_ N is defined to be zero. The 6 (-) represents the

Dirac delta function. The superscript o on if-N-k+2 is used to signify that it has

been evaluated with the optimal control o The cost associated with the
UN_k+ I"

optimal control is

o _/o . N-k+l _
E[Vk_l] = E{E[?CN_k+2/z J

Proof: This assertion is proved inductively. Consider the control for the last

First, from (IIIc)

N

E[VN] = E[ lWi(_i' Ui-l) l

i=l

N

t[ Zw_c_,u___>]pc_", z2-_>d__,z2-_)
i=1

stage.

N-1

; [ Zw,_.,,u,_l>)p=_,_z_-l>d_.N,___-_>
i=1

+ [ WN(_XN ' UN-I )p_N, _zN-l)d(_x_N,_zN-I) (2.7)
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N-1

The integrand of the first term does not contain x N or z , so an integration

will eliminate these variables. The control UN_ 1 enters only the last integral

so no other terms need to be considered in determining the optimal control for

the last stage. Let

E[Vll =Dr _WN(_N ' UN_l)P(xN, _zN-1) d(x- N, _zN-l) (2.8)

N-
Using the integrated chain rule (2.3), p(N, z % can be written as

peN,__N-1)= p_N/xN-l_,__N-1)p_N-1,z_N-5

p(_N-1 N-1 s - N-1 N-1= ,z )Jp(__N/X ,z ,WN_l)

p(_wN_i/xN-l, d-l)dw N_ i

But WN_ I is a white noise sequence, so

p(__N_i/d-i N-I,z ) = p(EN_I)

N-1
and since z defines UN_ 1, it is clear from (I) that

N-1
P(__N/X:-I, z ,WN_ I) = p(__N/XN_I,UN_I,WN_I)

= 6(_N-L N)

where 5 (") represents the Dirac delta function. Thus,

Substituting this into (2.8), E iV1] becomes

= __ ,_ ,W_N__)

Let

N __Dr._WN(.X_N,UN_I)6 (_N - f--N)P('V-N-I)d('_N'WN-I)
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Then

E[VI] N-I N-l)_.-_NP(__N_I,z )d(._N_l,Z

where the integration with respect to Nx__-2 has been performed.

further modified to

_.tv_ = ;_;_%_/zY-_)%__C_"-I)dzY-_
0

The E [Vl] will be minimized by the control UN_ 1 that causes

[ _N/Z N-l] = minimumE

= 1,This verifies (Vc) for k

oUN_ 1 by so that

This can be

Denote the value of >_N that is evaluated with

(2.9)

0 o

Suppose that the optimal controls UN_k+l,... ,UN_ 1

ing to (Vc) and that the expected cost associated with these (k-l) stages is

Then, using the Principle of Optimality, it follows that

_.tvkl= ;W,__k+_%__+ru,__k_'_-_+_,z'%dC_N-_+_,z'%_
o

+ E [Vk_l]

Let us rewrite the second term

o_ = j_fgN_k+2P(_X_- o N-k+l, _zN-k+l) d(.N-k+l, _zN-k+l)EtV k 1]

are computed accord-

(2.10)
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But

z N-p(_N-k+l__ k)_ , N-k+l N-k= Jp(Z_N_k+i/x ,z ,VN_k+ i)

• , N-k+l, z_N-k)dv_N_k+lP(Y-N_k+I/x

From the assumption on the noise and from (II), this reduces to

p_N-k+l, zN-k+l N-k+l, zN-k) _5_ ) = p(x _ (9-N_k+ 1 - hN_k+ 1)

P(Y-N_k+l)dVN_k+ 1

O

Using this result, E[Vk_I] becomes

o _ o N-k+l N-
E[Vk_I ] = :_S_k+2 5 (Z_s_k+l - hN_k+l)p(y_N_k+l)p(_ _ /z

N-k+l, zN-k+l).
d(.ZN_k+I,x

Let

Df o
-- F N_k+26 N-k+l - hN_k+l)p (y_N_k+l)d(.VN_k+1,ZN_k+ I)

So

,z N-O _ N-k+l, zN-_dC-k+l - k) (2.11)
E[Vk_ll = J/_N_k+lP(_X_ -

Introducing (2.11) into (2.10) yields

, N-k+l
E[Vk] = _(WN_k+ 1 + __k+l)P(__

Proceed as was done to obtain (2.9).

N-
p_N-k+l,z k) = p( N-k

, N-

It follows that

N--

,z k) 16(XN_k+ 1 _ fN_k+l)P(.W_N__dWN_k (2.12)
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Let

so that

Df

P (-_.N_k'x--.N_k+l)

E[Vk] = j N_k+iP(_N_k, - _ _

f'[eZ,_ x .zN-kdx - zN-k N-k
= J J. N_k+iP(XN_k/Z -_ ==N_kJp(9_ "_dz

The optimal control must satisfy (Vc) and the cost is

.-_ . N-k
E[V_] = E[E[._N_k+I/Z ]}

This completes the proof of the lemma. Q.E.D.

The optimal feedback control problem has been solved in principle if the

a posteriori density pQxk/z_ is known for all k. Similar results can be found

in [5,13,33].

2.2 THE A POSTERIORI CONDITIONAL DENSITY FUNCTION

In the preceding section, it was shown that the a posteriori density func-

tion provides all of the information required to determine optimal estimation

and control policies. In this section, equations governing the structure of

p_k/k+Y) shall be derived.

2.2.1 Recursion Relation for p_k/Z_5

density p(__/z_ can be described by an integral recurrence relation.The

This fact shall be stated as a lemma and then proven.
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LEMMA2.3: For the system (I) - (II) and a non.randomizedcontrol policy, the

a posteriori density function p(_._._/z?}evolves according to

• "zk-I p z /p%/_ )%_)
p_/k) = _/_k-1 (Iv)p%_ )

where

/ /z k-1= JP% __:r:_--,)P%-_- )¢%-i (2.13)

and

pz(.zk/z_k-:l" ) = _p(_y__/z_k-1)pz(z,k/.X::k)% (2.14>

The initial condition p x(X.o/Z) is given by

P z(.._/.._,o)P x(.._ )

p%/Zo) = P%) (2.15)

where

p%) = .i'p%/+.,:,)pmo)__o

Proof: The initial condition can be established directly from Bayes rule (2.4).

Thus, consider arbitrary k.

From the chain rule (2.2), one sees that

k-1p%,__/z_+ ) = p%/z_pz%/_"I)

SO

p%,_/zJ-_)

But the chain rule also enables us to write
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%/z )= P%_k- )P%-)pt_, k-1 _ / ,,k-1 /zk-1

This can be simplified to

p(_xk, Z_k/zk- 1) k-1_ : p_l_p_lzL )

since, from the noise assumptions in (1) and (I1), it is true that _k given Y_k is

k-1
independent ofz . Thus,

P_k/k- 1) p_/y_k )

k-1 (IV)

p%/_ )

This relation proves (IV). It remains to verify (2.13) and (2.14).

From the integrated chain rule (2.3),

k-1
P%/z_ ) = _P%/_kr zk-1 /_k-1_- )PLy_l- )_-1

But zk-1 defines _k-1 so

k-i , k-ip%/_ )= fP%/_k_l__l)P%_l/z _ )d%_1

The integrated chain rule also allows one to write

=

This completes the proof. Q.E.D.

The p Z(Zk/z_k-i) in (IV)does not depend upon _k' so itcan be seen to be

nothing more than a normalization constant. The basic structure for the

recursion relation is provided by the numerator. Itshould be noted in passing

that itis not possible in general to perform the integrationindicated in (2.13)

k-i
to obtain a closed-form for p(__/z _ ).

---K--
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2.2.2 The A Posteriori Density Function for Prediction and Smoothing

Equation (IV) provides the basic formula for filtering and control pur-

poses. Occasions do arise when it is desirable to obtain predicted or smoothed

estimates of _k' so it is necessary to determine the density p_k/Z_ k+Y) for

y i_ 0. For this case the control variables will be eliminated thereby reducing

the plant equation to

LEMMA 2.4: For the system (IE) - (If),the a posteriori density function

/zk-Y_
p(_xk _ _ fory>0 is

/zk-¥_d/-- ,
p(_X__y _ , x___l ""'_k-_ (VIE)

The proof of this statement follows immediately from the repeated application

of the integrated chain rule. See the derivation of (2.13) for the case when

y=lo

The derivation of the smoothing density is somewhat more involved. The

result can be stated as follows.

LEMMA 2.5: For the system (IE) - (II) the a posteriori conditional densiiy

function p(___y/Z_ for y > 0 is given by

p%_¥/z5=
/zy- , . . . ,

where p Z__k,...' z'--y+l/X'--y)_ --K is computed recursively according to
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p z(_,... ,._=¥+i/__y)

_%-y+,%-y)%-y+,

'' '"Z-k ....y+2/_k y+l)P z(=_k¥+i/_k y+1 )

(2.16)

The initial condition for this relation is (i. e., ¥ = 1)

Proof: The proof shall be inductive. Let ¥ = 1 and consider

_%__,_,___)= _%__._._j,_%_(_%
k-i k-i k-i

= p%,%/___,__ )p%_J_ )pc_ )

= _,_/___)p__,/_-_pc_ _-_)

, • • / • - /zk-1 zk-1= P%/_k _k-_)P%_k-,)P%-i = )P(_ )

= p Z(Zk/Xk) p(xk/Xk _ 1)P% _ 1/zk- 1) P(.z_k-l)_

Furthermore, it is true that

p%_l,!ik, 5 = p%_l,Xk/zk)p__ k)

= ,c__,._/zS, z_/_-'),(_'-_)

Equating (2.18) and (2.19) and rearranging terms, one obtains

_%)_%%__)___/F _)
p%_l,_k/_k) =

Integrate with respect to _k" Then

(2.17)

(2.18)

(2.19)
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where, by the integrated chain rule (2.3),

This proves (2.16) and (VII E) for ¥ = 1.

Suppose that (VII E) and (2.16) are true for y = j-1 and let ¥ = j.

as for ¥ = 1. Then it follows that

p_,_j,__j+_,z_: p%.,,,._,_m/_,_j+?

P%-j+I/_k-j)P(-_-j/k-j)p_k-j)

and, also that

, zk
PQ-Y-_-j'_k-j+l - )

Proceed

(2.20)

= P(-'xk-j'_k-j+l P )''"

p Z(Zk_j+l/k-J) p(z_k-j ) (2.21)

Equate (2.20) and (2.21) to obtain

p%-j/_-J)p%-j+l/_,-j)p% '''',_,-j+l/_,-j+?

_-J'_-J+J_) : _z%/z_k-J)..._z%_j+j_-J)

Integrate with respect to _k-j+l" Then

p%_/__k): _-{_-%_,-" ,_-m/_-j )
_z%/z__-_)..._z%_j+j_-J)

where from the integrated chain rule, it is true that

pz%,..., __j+l/_,_j) : rpz%,... ,_,_j+l/_,_j+l)

p%_j+l/_-j)%-j+l

By the chain rule (2.2), it is apparent that
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p%.,,,.__j÷J__m) : p%.,,,.__j÷2/__m)p%_m/__m)

This completes the proof of VII E and (2.16). Q.E.D.

2.3 CHARACTERISTIC FUNCTION EQUIVALENTS

Relations for the a posteriori conditional density function p(x,/z k+¥)

were derived in the preceding section. It is, of course, possible to obtain

from these relations their characteristic function equivalents. These relations

are to be derived and exhibited in this section. The characteristic functions

are introduced primarily for future reference. It has been found that in many

cases the problem solutions are most easily obtained using the characteristic

function formulation. The reader is encouraged to perform the derivations in

Chapter 3 by using the probability density relations of Section 2.2.

Recall that the characteristic function _ and the probability density func-

and

tion p associated with a random variable x form a Fourier transform pair [ 10].

1 :
(e. 2el

J

LEMMA 2.6:

o_

p(_x) = --1 _ exp(-is-Tx-)_°(_) ds
(_)n _oa

Consider the characteristic function for p(_.xk/zk )

Thecharacteristicf_ction_%) forp%/zk)is

as described by (IV).

1

n+m - k-1
(m p%/__ )

• T T
_exp[-' S_k/k-l-_k) _k- is__v -_k ]

cPs(._k/k_1)cP(-_v)d(-Y-_,_v, -_k/k_1) (viii)
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where <0S(Sk/k_l)andW(_ are the characteristic functions associated with

p(__xk/zk-1)andpZ(Zk/!_k) , respectively. The characteristic function _0S(Sk/k_ 1)

is given by

i ]'e_pE-i% T T_ - __/k_1)_ -i_k_1__I
(2TT)2n

(2.23)

where _p_) is the characteristic function associated with p_k/Xk_l,Uk_l).

Also,

z /zk-1 - i T _ iT k]
Pz(_k _ ) (2TT)n+m _exp[-i_k/k-l_k

_%/k-1)_%)d% '_'_/k-1 )
(2.24)

The characteristic function cOS(So)for pX(Xo/Z) is

v%) =
(2TT)n+mpZ(_)

yexpI-i sC_u - s_o)Tx - i Tzol

(2.25)

The _ SCan) is the characteristic function for p_o ).

Proof: The proof follows directly from the definitions (2.22) and from (IV).

The characteristic function of p_k/k) is

=. T k-1
1 ;exp [ i .Sk _k ]P(_Y.xk/z )P Z_k/_k>dX- k

(2.26)

But

p(_yxk/zk-1 ) -(1)n.Fexp[-isk_k_l_Xk]CP S(Sk/k_l)d-Sk/k-1

(2.27)
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and from (I1) it is clear that

-- 1 rexp[-isTz. ]_o(s)ds

(2_m " -v-x --v- -v

Substitute (2.27) and (2.28) into (2.26) and (VIII) follows directly.

The characteristic function _(Sk/k_l) is given by

._exp " T k-i= [ 1Sk/k_lXk] p_k/Z )dx_k_°(Sk/k_1)

But from (I)

P%/%-l'"k-1)

so from (2.13)

= 1 rexp[_isTx, ]¢p(s )ds

(2_)n _ -w-x _ -w

T
1 _exp[-i s(_w- _k/k-1 ) _k - i'_k-Tiy_:k-1]

(2_) 2n

This proves (2.23). The p Z_k/zk-1)_

(2.28)

•

can be written in terms of characteristic

functions directly from (2.14). The characteristic function _ S(So) follows

immediately from (2.15) Q.E.D.

The characteristic function for the smoothing density follows immediately

from (VI).

(__/z_k-Y) for >LEMMA 2.7: The characteristic function equivalent of p y 0 is

T T
= __y_fexp1 [-i S(_wk_1 - Sk ) _!k - iSwk_2_k_l]...

_°(Sk/k-_ (

(IX E )

T T

exp [-iSwk_¥Xk_¥+l - iSwXk_v]

d(-Xk_l,•••,_k_y,_wk_l, •••,_k/k_¥)
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LEMMA 2.8" The characteristic function for the smoothing density is

I J'e_pE-i%_y
(217)[(y+l)m+nI k_l P(9_ /zJ)

j=k-Y ]+1 --

k-1

exp [-i Z
T k/k-y

-_j+l/j_+,l_(Sk-¥)_-¥+,/k-y )
j=k-¥

k/k-y
d%_¥,___, gk-y+,/k-y'

T

-__y/k) __¥]

(XE )

where for this instance, we introduce the notation

k/k-y Df

_k-y+l/k-y = _(g-k/k-y' " " ' '_k-y+l, k-,/)

The density p Z(Zk,... ,Zk_¥+l/_k__ has the characteristic function

¥-1

.[exp [i( _ T k k._k_j/k_y_zk_j) ]pz__y+i/Xk_y)d z_k_y+l) (2.29)
j=O

where

k

(_)

¥-2

[(y-i)re+n] gk-j/k-y+l )
j=0

T T

-i_v.Zk_y+ 1 - i_v_Xk_y+ 1]

k/k-y+l

¢9_(-_k_y+2/k_y+l)q°s(_° s(_J

d k/k-¥+l
_[_k-y+2/k-y+l'_v'/_k-y+l)

(2.30)
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The characteristic function for p Z_.k/Xk_l ) is

(2n)n+ m _exp[-i s_v - ._k/k_l )Tz.k -i s__]

(2.31)

The proof of this result is straightforward and shall be omitted.
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PRECEDtt_G _E BkANi_ NOT FIU_D.

CHAPTER THREE

THE LINEAR, TIME-DISCRETE STOCHASTIC CONTROL PROBLEM

The model of Chapter 1 shall be specialized to that of a linear system.

The results presented in this chapter are not new but have been included to

illustrate the application of the general theory of Chapter 2 to a problem of

fundamental importance. It is believed that this discussion indicates the rela-

tive ease with which many of the most important results of the theory of linear

systems are obtained using the Bayesian approach.

Assume that the plant is described by the linear, difference equation

:  k,k-14-1 +rk,k-l -* + (I-L>

and the state is measured imperfectly according to

-_k : Hk_ +Zk (II-L)

The white noise sequences [_W_} and [vj _ shall be explicitly assumed to be

gaussian as is the distribution of the initial state x . The symbol L has been
--O

appended to the equation numbers to emphasize that the systems are linear.

The densities for plant noise w., measurement noise v., and initial
-3 -3

condition x are
--O

I T_-I
p(_wj) = [(2_)nlQjl]-l/2exp -'zw. _. w.7.-3 3--3

(3.1)

1v?RJv
p(y.j) = [(2_)mlRjl]-l/2exp-__j j -3 (3.2)

p X(Xo) : [(2_)nIMoll-1/2exp - _ x(_Xo- a_) (3.3)

39



In order to write (3.1) - (3.3), it is necessary to assume that the covariance

matrix of each distribution is positive-definite. If the matrix were singular,

one could always consider the variable in the subspace spanned by the eigen-

vectors corresponding to the nonzero eigenvalues of the covariance matrix [ 10].

The covariance matrix of the transformed variable in the reduced space would

be positive-definite. This difficulty can also be avoided by allowing the char-

acteristic function to be the defining relation for the distribution and restrict-

ing consideration to this function [ 24]. The latter alternative shall be utilized

in Section 3.1.

The control variables will be selected so that the expected value of the

quadratic performance index

N

VN = + --_-lUWi -=-i-lU) (IIIc- L)

i=1

is minimized. The mean-square error criteria

^ T ^
E[_ k - _k ) (..xk - Xk)] = minimum (IIIE-L}

will be seen in Section 3.2 to be required in the solution of the control problem

for the estimate of the state. Mean-square estimates are Considered in Sec-

tion 3.1 as a preliminary to the discussion of the control problem.

3.1 MINIMUM MEAN-SQUARE ESTIMATES

The model for the plant will be simplified in this section by the omission

Then, the state evolves in accordance with

_k = _k,k-l_k-1 + -W-k-1 (IE-L)

of the control terms.
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It was shown in Section 2. i that the estimate resulting from the minimum

mean-square error criteria is given by the conditional mean of the a posteriori

density function. This is true for all three aspects (i. e., filtering, prediction,

and smoothing) of the estimation problem and the solution to each shall be

presented.

Two general results [ 10, 39 ] will be used in the discussion.

(1) 1 _exp[isTx_]dx_ = 6s_) (3.4)

(2_)n

where 5 (") is the Dirac delta function

n
• r_ ,1/2 .1 T.-1

(2) __coexp[_Tz - zTAz]dz_ _ =(T_V) exp[_ A _] (3.5)

for any complex _1and positive-definite A.

LEMMA 3.1:

is gaussian

with mean value

where

The a posteriori density P(Xk/Z_ for the system (IE-L) - (II-L)

1C% ^ T -1[(2rr)nlPkI]-l/2exp - 2 - _k) Pk (-_ - _k)] (XI)

= _k,k-1 -1 (3.7)

, T , T -1
K k = PkHk(HkPkH _ + Rk) (3.8)

, cT
Pk = _k,k-lPk-1 k,k-1 +Qk-1 (3.9)

and covariance matrix
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(3.10)

At t
O

the mean value is

= a + Ko{Z'-o - H a) (3.11}
--O -- O"

where

K = M HT(H M HT+ -1 (3.12)
o oo o oo Ro)

and the covariance matrix is

P = M -K H M (3.13)
O O O O O

The equations described by this lemma constitute the so-called Kalman

filter [25, 30]. Within the framework of the Bayesian approach, the proof has

been found to be established most easily using the characteristic function formu-

lation described in Section 2.3. Note again that with this approach, the covari-

ance matrices need not be positive-definite.

Proof: Let us first establish the initial conditions (3.11) - (3.13). From (3.3)

it follows that the characteristic function for x is
-o

exp[i s T 1 T°0S(_rn) = -m-a - -2_mS MO_TnS} (3.14)

and from (II-L) and (3.2) the characteristic function of z given x is
--O --0

1 sTR s }
cps(_ = exp[i_v sTHo-ox -__v o-v

Substitute (3.14) and (3.15) into (2.25) and let

Df 1
k =

o (2_)n+mp z(__)

(3.15)
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&

--0
- HTs )x -isTz + is T 1a- sTM s

--m-- 2-211 o--In

_lsTR s .] d(s _,s ,x)
2-'v o-v --rn-v -o

Integrate with respect to x and use (3.4). Then
--O

; 0%cpS(So)= k° 5(H +s - exp[-is z• -'O "_"O

T 1 T
+is a-_s M s

--m-- v. --Ill o-'m

l sTR S_n s_-- s ,1 d ,2-v o--v

After integrating with respect to _n' this becomes

1 sTM s ] exp Hoa_) H M s ]cps_) = k exp[i.soTa - ]_o o-o _ s_[-i z(Z° - -0 -- 0 0"-0

_ lz_.vsT (Ho M o HTo + Ro)S-v]dS-v

Using (3.5) and evaluating p(.Zo),this reduces to

1 T
_2S(So) = exp[ i_osT [a_ + K ° z(z° - Hoa_)] - _ S_o [M ° -

But (3.16) is the characteristic function equivalent of (XI) with mean and

covariance described by (3.11) - (3.13).

To verify (3.6) - (3.10) assume that the lemma is true for tk_ 1

q_(Sk/k_l). From (IE-L) and (3.11)

cps(_ = exp[_w_k,k_iXk_I"T _ 21CQk_iSw ] (3.17)

Substitute (3.17) and %0S_k_l) into (2.23).

manner that

KoHoM0]s] (3.16)

and form

It follows in a straightforward

• T ^, 1 T
%0S(Sk/k_l) = exp[lSk/k_l _ - _.Sk/k_lP_k/k_l] (3. is)
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where _ and P_ are defined by (3.7) and (3.9). Note that this provides a solu-

tion of the one-stage prediction problem.

The proof of (XI) with (3.6), (3.8), and (3.10) proceeds in a manner that

is identical with that used to derive (3.11) - (3.13) except that _ and P_

replace a and M .
-- O

Q.E.D.

It can be proven immediately from (IXE) that the prediction problem has

the following solution.

LEMMA 3.2" The a posteriori density p(_k/k-¥), y > 0, for the system (IE-L) -

(IIE-L) is gaussian

pL..x.xklk-¥) = [(2rr)nlPk/k_.yl1-1/2

1{ ^ T -1_xp__ %/k-y - r_/k--r) r'k/k-¥%/k-¥ - _/k-r _} (xm

with mean value

gk,_-,( = _k,k-'_-¥ (a.19)

and covariance computed recursively from

T (3.20)
Pk/k-y = l}k,k-lPk-1/k-y_k,k-1 + Qk-1

where

+
Pk-y+l/k-y = ¢k-y+l,k-yPk-y_k-y T,k-Y Qk-y

The proof was established to a major extent in the derivation of (3.18).

The remainder of the proof shall be omitted.
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The solution of the smoothing problem requires more involved algebraic

manipulations than were required for the prediction and smoothing problems.

The equations stated in the following lemma were first derived by Rauch [ 36].

LEMMA 3.3: The a posteriori density p(___y/z___--

(IIE-L) is gaussian

=

with mean value

A

where

and covariance

Proof:

, ¥> 0, for the system (IE-L) =

[ (2_)n i pk_y/k i ]-1/2 (XIII)

1 ^ T -i ^

exp - _ [%-¥,'k- N-¥/k _ Pk-¥/k %-¥/k - N-¥/k _t

^

_-¥ + ck-_,tr_-¥+l/k - )k-_,+l,k-'_-¥) (3.21)

Ck_y = Pk_y_k_y?i/k_yP_-_iy+ 1 (3.22)

Pk-y/k = Pk-¥ + Ck-y(Pk-7+i/k - Pk-y+l)Ck-y

These relations shall only be verified for a one and two-stage

processes.

Consider a one-stage problem (i. e., ¥ = 1).

(3.17) into (2.31).

_o%/k_1) -

(3.23)

Then, substitute (3.15) and

This yields

1 fexp[_i S_v -is(_ T T
(2n)n+ m - =qk/k_l )T_ k - HkS.v) %]

i s_RI _ +s_TQk_lS_.WL) dz(_,X:k,._,,.+.,S_.w) (3.24)-.+
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Integrate with respect to -_k and _k" These integrations will introduce the delta

T

functions 5 S(Sv - __k/k_l ) and 6 s(sw - HkS_v). Next, integrate relative to --wS and

then with respect to s . This leads to
--V

= 1 . T 1 T

q°(qk/k-1) (2_)n+m exp[l_k/k-lHk_k,k-l_k-1 - 2 _k/k-i

(HkQk_lH _ + Rk)__k/k_l] (3.25)

k
The characteristic function for _k-1 given z according to (XE) is

_S_.k_1/Q = kk_l/k_exp[_iS(Ek_l T . T- _k-1/k ) _k-1 -r-ffk/k-l_k]

where

cPs('_k-1)%°('qk/k-1)d(z'xk-1'"_k-1'"q'k/k-1)

kk-i/k
Df 1

2n.[(y+l)m+n]_,_ / k-l,
l-,C._.kiZ J

From (3.25) and (XI), this becomes

T .T .T
_%__ik) -- _<_i/kJ'expti%__ik - ___ + ik,k__</k__) _-_

T T ^ 1 T

-i-qk/k-l-Ek + i_-l_k-1 - 7 _k-iPk-l_k-i

i T T

- _._k/k_l(RkQk_iHk + Rk)_qk/k_l]d(___l,._k/k_l,._k_I)

Integrationwith respect to _k-i introduces the delta function 5 s(sk_i/k- -_k-I

+ _T T
k,k_lH_.%/k_l). This is removedby integratingwithrespect to -%-1"

Then
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_%-_/k)

This integral is evaluated by inspection by applying (3.5).

• T ^ 1 T

= _-_/k e'_[_-_/k-r-_-_ - _ _-_/kPk-_-_/k ]

^ T T _ T T
']'exp[[i(I-Ik(I'k,k-1/_:k-1 - _k) - '_'k-1/kPk-1 k,k-lHl¢ ]'qk/k-1

1 T , T
- _k/k_l(HkPkH + Rk)_k/k_l]d_k/k_l (3.26)

After the constant

kk_i/k is determined, (3.26) becomes

T ^

cPS_.k_l/k) = exp[i_Sk_l/k___l/k

The mean value is

--
where

1 T

- _ -_k-1/'kPk-1/lc_k-1/k I

+_-1_% -_*k,k-1_i)

(3.27)

Kk_l/k =

and the covariance is

(3.28)

T T , T -1
Pk_l_k,k_lI-I_ (I-IkPkI-Ii_ + Rk) (3.29)

Pk-1/k = Pk-1- Kk-1/'kHk_k,k-lPk-1 (3.30)

Equations (3.28) - (3.30) do not appear to have the form described by the

lemma, but it will be shown that they are equivalent.

To prove the equivalence of (3.28) - (3.30) and (3.21) - (3.23) observe

that (3.30) can be written as

T p,-1
Pk-i/k= Pk-1-Pk-1*k,k-1k 5,_ k,k-Pk-1

But from (3.10)

-1

_"k :i-1V,_

SO
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Pk-i/k=Pk-1÷Pk-1_k,_-P_-1_Pk-P_P_-1_k,k-Pk-1

But this is in accord with (3.23) when ¥ = 1 and the definition of Ck_ 1 is

introduced. (3.28) reduces to (3.21) by recalling from (3.6) - (3.8) that

%% 5_k,_-_ _ _ _ %,k_

This allows (3.28) to be written as

^ ^ Pk-l_k, T- -_k _k, ^%-i/k= %-i + Ip_ i _ k_1%¢_i)

which completes the proof for ¥ = i.

The derivation of the smoothing density for y > i becomes considerably

more involved. For y = 2, one finds thatrD_(_k/k_2,.qk_i/k_2) is

where

(2TT)m+n
:P(-qk/k_2' _k_ 1/k_2 )

• T T

exp [1(_k,k-iHk'qk/k- 1

_k-l,k-2_k_2 ]

T T
+ Hk_rqk_L/k_ 2)

1 T T

exp [- _ [_/k-2 gk-1/k-21

Df (_k,k-i ,Tk +Nk/k-2 = Hk %-2_k-i Qk-I)H_

Nk_i/k_2 Df Q T= Hk_ 1 k_2Hk_2 + Rk_ 1

÷_
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Df } T
Ak_2 = Itk k,k_l%_2Hk_l

Then, after considerable manipulation, one obtains

where

• T ^ 1 T p
cPS(_k-2/k) = exp[l_k-2/k_-2/k-2_k-2/k k-2/k-_k-2/k ]

and

(3.32)

!!k-2/k _k-2 + Pk-2}k - k-2Pl_ -1 T T , T -1= (nkPkE +Rk)

z(-zk - ttk}k, k_2_k_2 )+ Pk_1/kPkllPl__141

, T -i ^
(I'Ik_lPk_lI'Ii¢_l + Rk_ 1) z(._k - tik_l}k_l, k_2YXk_2)l (3.33)

T , -i -i , T
Pk-2/k = Pk-2 - Pk-2}k-l,k-2[Pk-1 Pk-1/kPk-lPk-lltk-1

, T
(Hk_iPk_iHl__l + Rk_l)-iHk_l

T T , T -1 }
+ P{c_lPk_l_k,k_lI-Ii_(I-IkPkI-Ik + R k) I1k k,k_l ]

}k-l, k-2Pk-2 (3.34)

(3.33) and (3.34) can be shown to be equivalent to (3.21) and (3.23).

Q.E.D.

The preceding lemmas provide the complete solution of the estimation

problem for linear systems. The filter equations will be required in the dis-

cussion of the stochastic control problem as presented in the next section.
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3.2 THE LINEAR FEEDBACK CONTROLLAW

In this section the control law for the system (I-L) - (II-L) is derived

under the constraint that the control minimizes the expectedvalue of the

performance index (IIIc-L). Before dealing with this problem, a result from

the theory of optimal control of deterministic systems shall be stated.

Supposethat the plant is described by

=  k,k_lr _l + rk,k_l _l

and that _k is known at each sampling time t k. The control policy that mini-

mizes (IIIc-L) under these constraints is given by the following lemma [40].

The optimal control _ for the system (3.35) and performanceLEMMA 3. 4:

index (IIIc-L) is described by

O

UN_k_l = - hN_k_N_k,N_k_lXN_k_l (XIV)

T I1, F + U -1
hN-k = (FN-k,N-k-1 N-k N-k,N-k-1 WN-k-1)

where

W !

FN-k, N-k- iI]N-k
(3.36)

[I, = _ T W_N (3.37)N-k N-k+1, N-k_IN-k+l_N-k+l, N-k + -k

' - II' I" (3,38)
IIN-k = IIN-k N-k N-k,N-k-lhN-k

For k = 0, the [IN+1 appearing in (3.37) is taken to be identicallyzero.

Itis interestingto observe the similarity of (3.36) - (3.38) to the gain and

covariance matrices (3.8) - (3.10) of the optimal filter. This similarity has
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been recognized by Kalman and formalized in terms of a "Duality Principle"

[26,40].

The control law (XIV) has be_n included because it plays a fundamental

role in the solution of the stochastic control law. This problem has the solu-

tion described in the following statement.

SEPARATION PRINCIPLE: For the model described by (I-L), (II-L), and

(IIIc-L), the optimal stochastic control law is described by

o = -A _ ^
UN-k- 1 N-k N-k, N-k- lXN-k - 1

where AN_ k is defined by (3.36) - (3.38). The _N-k-1 is the minimum mean-

square estimate of the state XN_k_ 1 as obtained from the measurement data

N-k-1 N-k-2
z . In obtaining the estimate, the u

function.

is treated as a deterministic

Proof: The proof of this principle is obtained through the direct application

of the lemma of Section 2.1.2. Consider the last stage.

T T U
'_N = _(-_N_-N + UN-IWN-I-UN-I)

5 (-_N- _N, N-IXN-I - FN, N-IUN-I - WN-l)

p(_w.N_1)d_N, WN_ 1) (3.39)

Carry out the indicated integrations. This yields

T T T T
/_N = XN-I_N,N-IW_N_N,N-IXN-I + 2XN-I_N,N-IWIN, N-IUN-I

T U T
+ UN_I(WN_I + FN,N_IWX_N,N_I)UN_ l+trace [WNQN_I] (3.40)

The control u.._. is to be chosen to minimize the conditional expectation of_...
--IN .L iN
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T T
E[_/N/z_N-I ] = E[XN_I_N,N_IW_N_N,N_IXN_I ]

T T
+ 2UN_IFN, N_I_N_N, N_I_N_ i

+ UN_I(WN_I + FN, N-1)UN_I

+ trace [W_NQN_ 1] (3.41)

where we used the fact that

_N-I = E [xN_ _i/z N-I]_

N--1 . N-2
^

Since XN_ 1 assumes that z m given, the controls u
are known and

can be treated as deterministic forcing functions. Then, from Reference 30

we know that the error in the estimate is independent of a known function.

It follows immediately from (3.41) that the control that minimizes

E [/_N/zN-1 ] is

U - T (3.42)
o T + WN_I ) 1FN, N_IV_N_N,N_IXN_ IUN-I = -(FN,N-IV_N N,N-I

Let

[I' Df= W_NN

and

U - T t
Dr (r_ W r + WN_1)AN = I_,N-1 N N,N-I N,N-IIIN

Then, (3.42} satisfies the statement of the Separation Principle for the last

stage.

Consider a two-stage problem. The control for the last stage is given by

(3.42) and, using it, one can form/_o N"
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--o T T ,
_N = X-N-I _N, N- IIIN_N, N-IXN-I

T T II'
-2XN-I_N,N-I _N, A _ :_N-I N N,N-I-N-I

^T T , ^
+ XN_ I_N, N-IIINFN, N_IANSN, N-IXN-I

X

+ trace [WNQN_ 1]

At this point recall that the estimate can be stated as

A

[_k-1 = Xk-1 + [_k-1

Use this relation to eliminate XN_ 1 in (3.43).

_z N is seen to be

_--zo T T

'_N = XN-I_N, N-1IIN_N, N -lxN-1

T w _
+x TI_ N N_III_FN, N_IAN_N,N_IXN_I

--N--

+ trace [_NNQN_I]

where

= [I' - If'
[IN N NI?N,N-IAN

The fiN agrees with (3.38).

E [Vl]

(3.43)

After regrouping terms, the

(3.44)

The cost associated with the optimal control is

--o N-I

E{E [_-_/z ]}

E{E[_xNTISN, T II _ N-IN-1 N N,N-lXN-1 Iz ]

T [[' F -_ _T , N-1
+trace _N,N-1 N N,N-1AN_N,N-1E[XN-lXN-1 _z 1}

+ trace [W_NQN_ 1]
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At this juncture it is important to recognize that the conditional covari-

_-_ _ , N-1. N-I
ante E[XN_iXN_iIz ] is independent of the control vectors u and the

N-I
measurements z . This follows from the results in Section 3.i. Because

of this fact, only the first term must be considered in determining the optimal

control for earlier times. (This aspect is discussed further in Section 4.3.)

Since the term trace [_N T_II1EN, N_IAN_N, N_IPN_I + W_NQN_ 1]
has no

bearing on the selection of the control policy, it will be neglected and the _N

will be redefined as

and it follows immediately from (V C) that

_J"N- 1 N

Thus,

;(x T [I' x + T U' I_-i N-I-N-I UN-2WN-2P-N-2)

(_N-I - _N-I, N-2XN-2 - FN-I, N-2_N-2 - WN-2)

P(_-N_2) d(-_N_I, WN_2 ) (3.46)

where

It follows without difficulty that the control UN_ 2

is

o _ :_
UN_ 2 AN_I_N_I, N-2_N-2

WNX-I + CN,T-IIIN_N, N-I

that minimizes E[_ N_ i/zN-2]_
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where AN_ I is defined by (3.36) - (3.38). The proof for any k assuming that the

O

"_N-k-2 is (again, retaining only those terms that depend upon the control)

T T
_N-k+2 = XN-k+l_N-k÷2, N-k+iIIN-k+2 _N-k+2, N-k+IXN-k+l

is obtained directly from (Vc).

Q.E.D.

This completes the solution of the optimal stochastic control problem for

the linear system (I-L) - (H-L) and the quadratic performance index (IIIc-L) .

By necessity, the discussion has been restricted to the most important aspects

of the problem. The reader is directed to References 40 to 44 for a more

detailed examination of the linear problem.
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PRECEDTT_G_I _;I]BLANK NOT FILMED.

CHAPTER FOUR

A GENERALIZATION OF THE KALMAN FILTER

In this chapter, the perfurbative Bayesian scheme described in Section

1.3 is applied to the problem of determining an approximation to the a posteriori

density function associated with a nonlinear system. In compliance with the

aforementioned technique, the form of the density must be specified. It shall

be required to be gaussian for all k. This leads to a natural generalization of

the Kalman filter and suggests several interesting conclusions.

The approximation that is described in this chapter represents a generali-

zation of a result obtained by Aoki [33]. Results obtained by other investiga-

tors also indicate that the Kalman filter does not represent the most general

gaussian approximation. This problem has been considered for time-continuous

systems by Bucy [20], Bass et al [21], and Fisher [23]. Jazwinski [45] has

dealt with cases that involve discrete measurement data. His result has the

disadvantage that it does no___treduce to the Kalman filter when the nonlinear

effects are set equal to zero. It is shown in Section 4.2 that the equations

derived here do reduce to Kalman's relations.

The general result is stated in Section 4.1, and an outline of the deriva-

tion is presented. Several interesting conclusions follow from this result, and

these aspects are discussed in Section 4.2. The control of a system described

by a linear plant and nonlinear measurements is discussed in the light of this

approximation, and it is suggested that the Separation Principle is no longer

valid for this system.
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The filter resulting from this approximation is utilized in Chapters 5

and 7 to determine its behavior relative to linear and other nonlinear filters.

The results that are obtained, particularly those in Chapter 7, suggest that one

must approach the problem of approximating the a posteriori density with

caution because it appears that the estimates provided by this filter are biased.

This undesirable feature is discussed in more detail below. Another gaussian

approximation is discussed in Chapters 6 and 7.

4.1 AN A POSTERIORI GAUSSLAN DENSITY FOR FILTERING OF NONLINEAR

SYSTEMS

Consider a system in which the state _k evolves according to the non-

linear difference equation

where _k is n-dimensional.

with mean and covariance

S[_wj] = 0_ for allj

E[wj_] = QkSkj

Note that no control terms are included in (I-N)

The measurement data -_k are described by

--

where _k is m-dimensional.

mean and covariance

: +

The additive noise -_-k-1

The additive noise -_k

(I-N)

is a gaussian sequence

E [y_] = O for all j

(II-N)

is a gaussian sequence with
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The sequences{_yk] and [_Wk] are assumedto be independent.

E[_ T] =- 0 for allk,j.

The initial state x
"-O

covariance

Also, the x
"-O

That is

is taken to be a gaussian random variable with mean and

 txl = a

E[_xu_] = M°

is independent of the noise sequences.

The covariance matrices {tL],K {Qk ]' and M shall be assumed to beO

positive-definite in much of the succeeding presentation, but this is not a

severe restriction. If any of these matrices were singular, an appropriate

linear transformation would yield random variables of smaller dimension that

have positive-definite covariance matrices and the derivation would be carried

out in terms of the new variables. Further, the restriction can be seen to be

relaxed in the final relations that are obtained for the estimation policy.

The noise has been assumed to be additive in (I-N) and (H-N) in order to

simplify the densities p(xk/_k_l ) and p Z(_k/Xk ). If non-additive noise were

assumed, it would be necessary to introduce the Jacobians of f-k and _k with

the concomitant complications.
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The procedure described in Section 1.3 shall be used to approximate the

p(_x_/k). It will be assumedthat nominal valuesa posteriori density function

will permit the conditional density p(__xk/z__k) to beare available that

gaussian for all k. Taylor series expansions of the _-k and _k will be intro-

duced using the nominal values of the state. This procedure leads to a generali-

zation of the results for linear systems (i. e., of the Kalman filter).

Before proceeding further, let us introduce some of the notations that

will appear. Let

8f

Fk Df= (_)=k+l, =

" ' " n

1 naxk evaluated with

with the superscripts denote the component of the vector. The first partial

derivatives of _+1 with respect to _k+l are

Df 3_k+l ,

The derivatives are evaluated with

Df

=

Second partial derivatives are also used.

portent of _k+l and _k+l are denoted as

.th
The second partials of the i com-

6O



/
/" .

(2i 1i Df 8fk+l

% -- a%a%

and

The Gk and iJk+l are evaluated with _ and _k+l' respectively.

Finally, the perturbations in the state and measurement vectors are

Df
6%-- %-%_

and

Df

With this introduction, we make the following assertion.

LEMMA 4.1: Suppose that the [k and _k of (I-N) and (H-N) have at least con-

tinuous second partial derivatives. Then, assuming that there exists some

nominal value _ of the state that is a sufficiently good approximation, the a

• . k+l
posteriori density P_Xk+l/Z ) can be written

p%+/_+_ --I_nIPk+_Ij-_P

where

1 ^ Tp-iexp--_%+1- %_+1) k+1%+1

^ A

_+_ = _+_) +_+_

-_k+l) Ocv)

= p T -i z -i T 1 T -i -i ^
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At t
O

-i FkPkF:)-i T -i -I= - 2 Ek_k+lFkQ kPk+l (Qk +

m

ET--I T R-I- i i
k _k+lEk Hk+ 1 k+lllk+l _ l- + - Jk+lYk+l

i=l

the density is gaussian with mean
-0

= x*+5£
"-O --O --O

and covariance P .
0

^ °•>5x = Po[H R z +M a]-'O O ,

m

P = [HTR-IH -ZJi i + _1]
-1

o o o o oy ° M
i=1

Most of the quantities appearing in (XV) have already been defined.

i
the Yk+l are components of the vector

Df -i

Zk+l = 1 k+16- +1

and
n

.T

Ek Df Z i -i -i

i=l

Df T -i -i
[Ik+l = FkQk Fk+Pk

.T
1 th -1

The flk is the i row ofO. •"K

However,

As was shown in Section 2.1, the minimum mean-square estimate is

provided by _k+l" Note that Pk+l is a covariance matrix, so it must always

be non-negative definite and preferably should be positive-definite. The man-

ner in which the second order terms enter the defining relation suggests that

Pk+l might lose this sign-definiteness if the magnitude of these terms becomes

too large. This can provide a criteria for judging when the nominal no longer
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provides a reference that is adequate for the gaussian property to remain

valid.

Proof: In the subsequent pages, only a detailed outline of the proof is given.

The complete derivation is found in Appendix A.

The a priori statistics for x, [Ki] , and [Xi} are gaussian and described

by (3.1) - (3.3). The desired recursion relations are obtained inductively.

• k+l

First, the initial density function p x_/z) is determined, and then p(__Xk+l/Z )

is derived after assuming the gaussian form for p(xk/z_.

p%/x) = kvoxp- % (4.

Expand h in a Taylor series about x* and retain only the quadratic terms in
--O --0

6x that appear in _ - h__)TRolZ(_ ° - h__). Then
"-0

1 zTR-16 z
pz(_/_)) = k exp - 7 [6 - 25zTR-IH 6x

V "O O -'O -'O O O --O

+ 6x_oT[HTR-IH
O O O

m

- JoYo ]5-ox]

i=l

(4.2)

where the notation has been defined above. The nature of the approximation of

pz_/Xo) (and, more generally, the pZ__k/Xk))has been found to a criticalcon-

cern in attempting to describe the p_k/Z_. This aspect will be discussed in

Chapter 6.

Substitution of (3.3) and (4.2) into (2.15) yields

1 1 ^
p%/z) = ko exp- _ [X(_o- X__o)TP° %- x)] (4.3)

where

= x*+5_
--O --0 --O
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6:_ = [HTR-16z +M-16a]
-o Po- o o -o o -

m

Po = [HTR:IHo- Z iiJoyo +M-I -lo ]

i=1

and

Df
6a = a -x*

m _ _0

The minimum mean-square estimate of x
"-0

• k+l
A posteriori density p(_xk+l/Z - )

given the dataz is_ .
--O --O

To determine the relations for an arbitrary sampling time, assume at

t k that

1 ^ T -1
p(_xk/zk ) = k kexp _[% ] (4.4)- -Kk) Pk _k--Y-_k )

The derivation of p%+l/zk+l)is_ accomplished according to the following steps.

1. Formp%+1/5.

From (3.1) and (l-N), it is clear that

1 T
P_k+i/!!k ) = k exp _ [(_k+l - (4.w - - _k+l ) Qk%+l f-k+l )} 5)

Expand f-k+l in a Taylor series and retain only the quadratic terms (and lower

order) in 5 _k in the exponent. This result in combination with (4.4) produces

p (y._+ i/z_ kkkw exp 1
- kN k - _ [64+1%16!ik+1 + 6_Pkl6_k

where

T -I Pkl6 _k ]6_k = BktFkQ k 5%+1+
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and

n

-1 FT-1 F i i -
Bk k% k-I + Pkl= Gk_0 k

i=l

Df -i

-_k = Qk 6_k+1

2. _odify_Bk1_

_Bkl5 is not a quadratic function of 6 _k+l' so it must beThe 6 _k

• /zk+l
modified in order for the pt.xk+1 _ )to have the gaussian form. Using a

Neumann series and neglecting allterms of order greater than quadratic in

5 _tk+ I, one obtains
.... -I -i T -i 1

T -_ -_ T -_ T--_F -_
+ 5%+1[ % FkRk+lFk Qk + 2EkRk+l kQk

(4.7)

where

The _k is the

-1
= FT--IF +Pk

Rk+l k Qk k

n .T

= Gi_-i R-16 ^
Zk I kt_ +I k

i=l

-i

row of Qk "

3. Determine PZQ_k+i/[_k+I)

From (H-N) and (4.i), one sees that

p%+/%+1_ = kve_P- _ _%+1- _k+l) k+1%+1
(4.S)
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Expand_k+l

P%+/_k+l)

in a Taylor series and retain only the appropriate terms. Then

=k
V

.

that

Form P Z(_k+l/Z_

1 T_-I 6
exp-_ [_+iKk+1_k+lJ

m

1 T R-I _ ji i .
exp-_{6Y_k:l[Hk+l k+lHk+l _ k+lYk+l 1

i=1

z T -1
6Xk+ 1 - 26=.k+iRk+iHk+15 Xk+l ] (4.9)

It follows in a straightforward manner from (IV), (4.6), (4.7), and (4.9)

kkkwkv exp 1 {szkTiRk+16 ^ T -1
kk+ikNk - _ %÷i - _%÷Pk÷1_k÷1

where 5
-k+l

5.

_,+ - Pk _k+iPk ]

and Pk+l shall be defined below.

•k+l

Form p(__+l/Z )

(4.10)

Performing the operations indicated by (IV), the a posteriori density is

found to be given by (XV) thereby completing the proof.

Q.E.D.

4.2 ON THE APPROXIMATION OF NONLINEAR SYSTEMS

Commonly, the analysis of the nonlinear system (I-N) and (H-N) is

approached by introducing linear perturbation theory. This requires the choice

of nominal values _-1 for the state. Then, the linear perturbation equations

are
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= Fk r -i + (4.11)

where the F k and Hk have been defined in Section 4.1. The choice of the

nominal is made somewhat arbitrarily, and its adequacy is gauged by the sub-

sequent results.

Assuming that (4.11) and (4.12) are accurate representations of the

deviations from the nominal, the problem of estimating _k reduces to the

simpler problem of estimatingSx k. Since this system is linear and the noise

sequences are gaussian, the recursive minimum mean-square estimate of 5_k

is given by the Kalman filter equations of Section 3.1. The result of the pre-

ceding section gives a generalization of this linear approximation, and in so

doing, provides insight into other aspects of the problem, including the choice

of the nominal.

4.2.1 Relation to the Kalman Filter

In this section we shall demonstrate that (XV) reduces to the Kalman case

when the matrices containing the second partial derivatives are identically zero.

Let

i = ji = 0 for all i,j
Gk k+l

Then, it is true that

The equation for _i_k+l

Ek=- O.

in (XV) reduces to

T -1 - - -
= Pk+l[I-Ik+lRk+16z.k+l + QkiFkl]kllPklS_k ]
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and the covariance Pk+l becomes

-1 = [(% + FkPkF[)-I T -1Pk+l + Hk+iRk+iHk+l ]

Let

p, Df Tk+l = Qk + FkPk F (4.13)

From a matrix inversion lemma [46,30], it follows that

= p' p'
Pk+l k+l - Kk+lHk+l k+l (4.14)

where

Kk+l __Drp, _ T , T -i (4.15)k+iHk+l [Hk+iPk+iHk+l + Rk+ I]

But (4.13) - (4.15) correspond to the gain and error covariance matrix of the

Kalman filterequation (El)with Fk substituted for #k+l,k"

The estimate 5_k+l can be modified since itis known [30 ] that (4.15) can

be written as

= p - TR-1Kk+l k+1 +1 k+l (4.16)

Then

6__k+ 1 = Kk+16_k+ 1 + P_ _Q-1F_II-1 p-15:_k+l K k k+l k --k

Substitutethe defining relation for II-I Then this becomes
k+l"

I--1 A

6!_k+ 1 = Kk+16_k+l + Pk+lPk+lFk6!! k

But

-1
Pk+lP_+l = (I - Kk+lHk+l)

SO
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A

6%+I = Fk6 % + -Hk+iFk  1

which is the Kalman estimate.

4.2.2 Choice of the Nominal

The values of the state that are chosen as the nominal will obviously play

a key role in determining the validity of the approximation. For many prob-

lems (e. g., space navigation), it is convenient to specify a nominal before the

system is in operation and to then compute many of the quantities required by

the filter off-line. This policy minimizes the amount of computation that must

be performed while the system is in operation. It has been suggested that it is

not always desirable to prespecify the nominal because the quality of the linear

approximation is caused to deteriorate more rapidly° The filter described by

(XV) provides analytical corroboration of this intuitive idea and demonstrates

that the best choice of nominal at each sampling time tk+ 1 is the _k"

In (XV) suppose that the nominal is selected as

with this nominal, it is obvious from

that

5_k - 0.

The estimate (XV) reduces immediately to

-1
(4.17)
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Furthermore, from the definition of Ek, observe that

Ek-- 0.

Therefore,

m

- _ T R-I i i -iPk+l 1 "k+l k+l k+l= + - Jk+lYk+l ] (4.18)

i=1

Certainly (4.17) and (4.18) are simpler in appearance than their counterparts

i from the plant hasin (XV). In fact, one notices that the second order term G k

disappeared entirely. The error covariance matrix Pk+l contains the second

order measurement effects ji
k+l' and these terms cause the Pk+l to depend

upon the measurement data. This is in sharp contrast with the Kalman filter

in which the error covariance matrix and, therefore, the gain can be computed

off-line.

With this choice of nominal, the minimum mean-square estimate is seen

to be

=f ^ +

is defined by (4.16) and

=

where Kk+ 1

- hk+l _(_k+l)] (4.19)

in (4.18) can be written in a form that is more computationally

L Df , -1 T -1 -1
Pk+1 = [(Pk+l) + I'Ik+1Rk'_lI'Ik+1]

The Pk+l

attractive. Let

By a matrix inversion lemma, this is equal to

+R-I -i p,
k+l ) Hk+l k+l

p L _ p, T p, T
k+l = Pl_+l k+iHl{+l(Hk+l k+lHk+l
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With this definition, (4.18) becomes

m

= pL ji i pL -i
Pk+l k+l[ I- ( _ k+lYk+l) k+l]

i=l

When the second order terms are not present, this becomes

=pL
Pk+l k+l

and we note that P L
k+l is the error covariance matrix of the Kalman filter.

4.2.3 Conclusions

The preceding development has produced several interesting results.

1) Linearization of the nonlinear plant and measurement equations

about some nominal does no.__tprovide the most general form for

the mean and covariance of a gaussian conditional probability

density function P(Xk/Z__.

2) Expansion of the nonlinear plant and measurement equations about

arbitrary nominal values subject to the constraint that the density

P(Xk/Z_ must be gausstan produces mean and covariance that

depend upon the second order terms of the expansions. In con-

trast with the Kalman filter, the covariance depends upon the

measurement data.

3) If for each k the plant equation _-k is expanded about the conditional

mean _k-l' all second order terms from the plant equation are

eliminated in the relation for _k" The covariance still depends

upon the measurement data and contains second order terms of

the measurement equation.
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4) The defining relation for the conditional variance Pk+l contains

negative terms that could destroy the positive- (or non-negative-)

definiteness property required for this matrix. If such a situation

were to arise, it would suggest that the nominal values were no

longer an adequate reference and would suggest that a nongaussian

conditional density function is required.

The disadvantages inherent in these results arise primarily through the

increased number of computations that must be performed on-line. That is, if

s,

the minimum mean-square estimate provided by _k+l in (4.20) is used, the

error covariance matrix must be computed during the operation of the system

described by (I-N) and (II-N). In the Kalman filter, this matrix does not depend

upon the measurements, so it can be computed in advance if the nominal has

been specified. Also, if the estimate is treated as the nominal, it is necessary

to compute all system matrices on-line since the Fk, Hk, and jik+l are all

computed using the nominal values. Thus, the computational load is greatly

increased if this formulation is to be implemented. Additional remarks regard-

ing the nonlinear filter of Section 4.1 are found in Chapters 5 and 7.

4.3 ON THE CONTROL OF A LINEAR PLANT USING NONLINEAR

MEASUREMENT DATA

In this section, no formal results are to be exhibited. Rather, the filter

derived in Section 4.1 will be utilized to suggest that the Separation Principle

of Section 3.2 cannot be extended to the situation in which the plant is given by

: tk, k-lX'--1--K + Fk, k-lU'--1--K + -_-k- 1 (I-L)
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and the measurements are described by

(II-1_

As in Chapter 3, consider the problem of establishing the control policy

for the system (I-L) - (II-N) that minimizes the quadratic performance index

(IIIc-L) under the constraint on _k that the a posteriori density remain gaussian

for all k.

For the last stage, the function _ is easily seen to be (re: equation

3.40)

T
= xNTI_N,N_IWX N N,N_IXN_I

T T

+ 2 XN_I_N, N_IW_N, N_IUN_ I

+ T . U T
UN_I(WN_ I + FN, N_IWXiN, N_I)UN_ l+trace [W_NQN_I]

The control that minimizes E[_.N/zN-1]_ is

(4.2i)

O

UN_ 1 = - AN_N,N_I_N_ I (4.22)

where AN is defined by (3.42). In this case the estimate is not given by the

N-2
Kalman filter equations. It follows from Section 4.1 and the fact that the u

is known that

_N-I = _N-I,N-2_N-2 + KN-I(_N-I - HN-I_N-I,N-2_N-2 )

where

+ (I- KN_IHN_I)FN_I, N_2_N_2

T -i

KN_ I = PN_IHN_IRN_I

m

, ,-= - HN_IRN_IHN_I - I JN_IYN_ I

i=1

(4.23)
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pt = T
N-I _N-I, N-2PN-2_N-I, N-2 + QN-I

Thus, the Separation Principle is valid for a_single-stage problem.

Unfortunately, it does not appear to be possible to extend this to multi-stage

problems. We shall consider a two-stage problem and indicate the reason for

the added difficulty.

problem.

t _ oAs in (3.43) of Section 3.2, he_- N can be written as

-o T T

N = XN-I_N, N-I[IN_N,N-IX-N-I

From/_'N-I

No attempt will be made to derive the control law for this

+xT_ T rl'-
-N-I N, N-I _N, N-IAN_N, N-IXN-I

+ trace (W_NQN_I)

according to (Vc)

= _ZN6 _-N-1 -hN-1)P(Y-N-I)d(Y-N-I'ZN- 1)

= X_N_I_N, N_IHN_N, N_lXN_I + trace ( QN_I)

+ _N, N-1H_{VN, N-IAN_N, N-lXN-I

(4.24)

6 _N-I - hN-I)P(Y-N-I)d(Y-N-lZN-I) (4.25)

In contrast with the linear filter, the term involving XN_ I does contribute

to the control. To verify this, we shall perform the integration of (4.25) with

respect to ZN_ 1. Then, as indicated in the formation of_N_l in (Vc), one

must integrate with respect to XN_ 1. After these two integrations are performed,

the error can be written as
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XN_1 = _N_I,N_2XN_2 + KN_I[hN_1 + VN_1 - HN_1

(_N-I, N-2_N-2 + FN-I, N-2UN-2 )] - WN-2

As has been indicated in Section (4.1), the hN is approximately

hN-1 = HN- lXN -1 + v2h

(4.26)

(4.27)

where

V 2h
Df

T 1
XN-?N-IXN-I

i

T m

X--N_IJN_IXN_ I

Introducing (4.27) into (4.26), one obtains

N N

XN_ I = _N_I,N_2_N_2+KN_I[HN_IXN_I + v2h-+VN_I

- HN_I(_N_I,N_2_N_ 2 + FN_I, N_2_N_2)] - EN_ 2

But XN_ I is described by (I-L) so thisbecomes

XN_ I = (I - KN_IHN_I)(_N_I,N_2_N_ 2 - Ek_l ) + KN_IV 2h+KN_IZN_I

At this juncture, let us recall thatin the linear problem, the V 2h would

be identicallyzero and the gain KN_ I is independent of the measurements.

Thus, as was stated in Chapter 3, the term involving XN_ I does not contribute

to the control policy. It is this fact that permits the proof of the Separation

Principle for linear systems. It is clear from (4.15) and (I(%/")that KN_ 1

depends upon the measurement data ZN_ 1 and must, therefore, contain the
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control UN_ 2. Furthermore, the v2h depends upon XN_l, so from (I-L), it

2h_must be true that _7 must contain UN_ 2.

2 _"
The V h and the KN_ 1 do not allow the term involving XN_ 1 in (4.25) to

be neglected in determining the control policy. This was necessary in estab-

lishing the Separation Principle in Section 3.2. Of course, if one were to con-

tinue the derivation, it might be found that the control is unaffected by these

terms, but this would be surprising.
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CHAPTER FIVE

FILTERING FOR NAVIGATION OF A SPACECRAFT

Several of the results of Chapters 3 and 4 are applied to the problem of

estimating the state of a spacecraft. The linear filter of Chapter 3 is utilized

for the greater part of the study contained in this chapter. In many cases,

linear perturbation theory is found to adequately describe the physical system,

so one would expect the linear filter to perform "satisfactorily". Occasions do

arise, however, when the nonlinear effects seriously affect and sometimes

even destroy the validity of the output of the linear filter. It is the intent in

this chapter to illustrate both of these situations. Then, several techniques

are investigated which allow the range of applicability of linear theory to be

considerably extended. Finally, the nonlinear filter of Chapter 4 is applied to

the problem to illustrate the effect of including nonlinear terms. These results,

unfortunately, are of a somewhat disappointing nature.

The basic problem and the mathematical model are discussed in Section

5.1. The numerical results obtained from the digital computer simulation of

the problem are presented in Section 5.2. The conclusions that can be drawn

from these results are presented in Section 5.3.

5.1 THE SPACE NAVIGATION PROBLEM

The objective in this chapter is to consider the applicability of perturba-

tive techniques to a significant nonlinear problem. In particular, the problem

of estimating the position and velocity (i. e., the state) of a spacecraft moving

in a nearly circular orbit about the Earth is studied. The estimates are to be

based upon the measurements provided by a horizon sensor aboardthe craft.
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Several different estimation policies are utilized, although the linear

filter described by (XI) provides the basic configuration. The policies are

listed and described below. Before discussing them, the basic mathematical

model shall be presented. A more detailed discussion can be found in

Appendix B.

5.1.1 The Mathematical Model

For this study, the Earth shall be assumed to be spherical with radius r o

and to have a spherical gravity potential U described by

U -
R

The _ is a constant equal to the product of the mass of the Earth and the uni-

versal gravitational constant. Let R be the distance from the center of the

Earth to the spacecraft.

A coordinate system is defined to be a nonrotating cartesian system with

origin at the center of the Earth. The coordinate axes shall be denoted by X, Y,

Z. The motion shall be assumed to occur, primarily, in the X-Y plane. In

this system, the equations of motion for the spacecraft are known to be

= - R (5.i)
-- R 3 --

In order to use state vector notation, (5.1) must be reduced to a first order

differential equation. This is accomplished by defining the state x to be the

six-dimensional vector formed from the components of the position R and

velocity _ vectors.
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Then, the state is seen to evolve according to

/tt V

i

i

v -R- 3
!

IX
f_(_x) (5.2)

For this system we shall assume that the plant does no___tcontain any noise, so

(5.2) provides the specific form for the plant equation (I) to be considered in

this example.

The position and velocity of the spacecraft are to be estimated using the

angular measurements from a horizon sensor. This instrument is assumed

to measure:

(1) the direction of the local vertical relative to the X-axis of the

coordinate system• The direction is specified by the two angles

and 5, where _ is the angle between the X-Y plane and the line

of sight and 5 is the angle between the X-axis and the projection

of the line of sight onto the X-Y plane.

(2) the subtended Earth angle ft. The fl is defined as the angle between

the line of sight to the edge of the planet and the local vertical•

79



These angles are depicted in Figure B-1 of Appendix B and are given by

-1 X3
= - sin

R

-i
6 = sin

X 2

2 .2,1/2
(X 1 + A2)

r
-1 o

= sin R

(5.3)

Let

6 (5.4)

Assume the measurements contain an additive, gaussian white noise sequence.

Then, (5.4) completes the definition of the measurement equation (II-N) for

this example.

The nonlinear equations (5.2) and (5.4) must be expanded in Taylor series

relative to some choice of nominal values for the state. To apply the Kalman

filter of Chapter 3, the system must be reduced to a linear model, whereas

second order terms are required for the filter of Chapter 4. Assume that the

required nominal x* exists and expand (5.2) and (5.3) in a Taylor series. In

this chapter the plant equation will always be assumed to be linear, so one gets

6x_ = F6x (5.5)

where F is the matrix containing the partial derivatives of f__with respect to

x. Let

Df
6X = X-X*
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The solution of (5.5) is known to have the form [3]

5Kk = }k,k_15Kk_1

is the state transition matrix and is the solution of
where _k, k-1

with initial condition

_=F_

(5.6)

(to, to) = I

For the dynamical system (5.2), it is possible to obtain I in a closed form [55].

The solution is presented in Appendix B. Equation (5.6) will serve as the plant

equation for the perturbed state. Note again that no noise appears in this

relation.

The first and second order partial derivatives of a, 5, and fl are formed

in a straightforward manner. They are presented in Appendix B. In many

instances, the partial derivatives are very difficult to determine analytically

because of the complicated nature of the equations. Wengert [47] has sug-

gested a procedure for determining these derivatives in terms of elementary

functions that seems to be quite reasonable. Wilkins [48] applied this approach

to a complicated system and concluded that the method was very satisfactory.

We mention this work because it appears to be a necessary consideration for

the development of a practical nonlinear perturbation theory.

5.1.2 The Estimation Policies

Most of the results presented in the next section are based upon the

linear filter described by Lemma 3.1 of Chapter 3. Five different policies are

examined using the linear filter. Two additional policies are investigated using
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the nonlinear filter described by Lemma 4.1 of Chapter 4. Each of the policies

is discussed in the detail deemed necessary in the succeeding paragraphs.

(L-l) Linear filter with a prespecified nominal

The linearization is performed relative to a circular orbit at a

100 n. mile altitude. This nominal is used throughout the flight

and the filter equations (XI) are utilized.

(L-2) Linear filter using _k-1 as the nominal state at each tk

It was observed in Section 4.2 that the most appropriate choice

A

of nominal at each sampling time tk is the estimate _k-l" Thus,

at every sampling time, the nominal is selected to be

The linearization is accomplished relative to this nominal, and (XI)

is again utilized. In this case, observe that

6_k_l = 0

after the change of nominal has been completed. This procedure

shall be referred to as rectification.

Rectification has a disadvantage in that all of the system matrices

(i. e., _k,k-l' Hk' etc.) must be recomputed at each sampling time.

If a prespecified nominal is used, the system can be computed and

stored prior to the actual realization of the system.

error covariance matrix Pk and the gain matrix Kk

computed. This results in a considerable reduction of on-line

computation. On the other hand, the additional on-line computation

In fact, the

can also be pre-

82



(L-3)

does not represent a significant restriction in many cases, so

rectification provides a very sensible means of extending linear

theory.

Two means of extending the linear theory without resorting to orbit

rectification are suggested. The first can be applied to systems

containing plant noise as well as measurement noise.

policy is restricted to systems with noise-free plants.

regarding these policies follow immediately.

Modified Observation Matrix H k

The approach used in establishing this policy shall be discussed in

somewhat greater detail in Chapter 6. For the moment, consider

the measurements to be described by (II-N).

-- +

Assuming a nominal, expand _k in a Taylor series and retain the

th
first and second order terms. The i component is given by

z - Ni

j =lOX k j =1./=1

As has been noted, the ith row of the observation matrix H k is

partial derivatives are evaluated with the nominal values _. )

The second

More details
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In approximating _k by HkS_k, it is clear that the secondorder

(andhigher) terms are neglected. But this can be circumvented

to a certain extent through the following artifice.

predicted estimate of 5Y_k (i. e., E [5 Xk/5 zk-1]}.

and the plant equations.
^

depends upon 6 _k-1

then

Consider the

This estimate

If the plant is linear,

5_k' = _k,k_lS_k_l

As long as the error in this estimate is small compared to the

estimate itself, (5.7) can be approximated by

A

In (5.8), the 5 _' has been substituted for the state perturba-

tions 5 _k" The relationship between the measurements and the

state is linear, but it contains the second order partial derivatives.

The elements of the observation matrix are redefined as

(5.9)
.. " n 82h_

This modified observation matrix is used in conjunction with the

linear filter and prespecified nominal described in Case (L-l},

and constitutes the third policy. Note that if rectification is

utilized, the predicted estimate is identically zero and Hk is

reduced to the first order terms.
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(L-4) Re-estimation of the initial state

Since there is no noise in the plant, a smoothed estimate of the

initial state deviation can be easily determined from 6 _k" In

particular, assuming that

6_k = _k,o6_o

it follows that

^

6X/k

(5.10)

where 5 _k is the estimate provided by the linear filter equations.

A

Using the smoothed estimate 6 _o/k and the true equations of motion,

one can determine an estimate of the current deviation that elimi-

nates the errors that accrue through the linear approximation of the

A

plant behavior. To determine this estimate, let Xo/kbe the estimate

of the initial state

^ = x*+5_
Xo/k -o -o/k

Then, the estimate of the current state can be computed as

The _k needs to be computed only when it is actually required

(e. g., when a guidance maneuver is to be introduced that is based

u_o__ or_ _ _ _or*_ ,o_o_t_o.o_,_a__ pre-

specified.
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(L-5) Rectification using a smoothed estimate

It is possible at each sampling time t k to form a smoothed estimate

6 _k-1/k using (3-28). One would expect that this estimate would

A

generally be superior to 6 _k-1 since it is based upon more data.

Then, let the nominal state be selected as

A

= +

-- A

The old nominal __1 ) is computed from 6_k_1 as discussed in

Case (L-2). The smoothed estimate is only used to modify the

A

nominal so the estimatc of the perturbation 6 r_k_ 1 used in comput-

ing 6 _k is set equal to -6 _k-1/k" This policy essentially doubles

the computational requirements required in Case (L-2).

This completes the definition of the estimation policies that are investigated

using the linear filter. Cases (L-l) and (L-2) are repeated using the nonlinear

filter described in Chapter 4.

(N-l) Nonlinear filter with a prespecified nominal

^

(N-2) Nonlinear filter using Xk_ 1 as the nominal state at each tk

These policies describe the basic nature of the numerical investigation.

These cases were investigated for a variety of sampling intervals, instrument

accuracies, deviations in initial conditions, and random noise sequences. The

data that are presented in Section 4.2 are representative of the type of results

that were obtained. In order to most clearly demonstrate the character of the

results, a minimum amount of data has been included.
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Two types of data are presented. Certainly, the error covariance matrix

Pk should describe the effectiveness of the filtering procedure if the model is

accurate. Since we are approximating a nonlinear system, the Pk does not

always reflect the covariance of the error in the estimate, so a Monte Carlo [61]

simulation (i. e., a random number generator is used to simulate the noise in

the measurements) is performed to obtain samples of the actual error in the

estimate. These errors are compared with the semi-axes of the position and

velocity error ellipsoids [ 10,30] in an effort to determine if the error covari-

ance matrix is a valid measure of the errors.

5.2 NUMERICAL RESULTS

The trajectory that is examined is approximately a circular orbit at

100 n. miles altitude. The constants assumed for the Earth model are [63]

1016= 1.4076539 x ft31sec2/

r = 20,925,738.0 ft.
O

The initial conditions for the nominal (i. e., before any measurements) are

designed to give a 100 n. mile circular orbit based on these constants.

R

m 21533391i 010 ; V = 25,567. 728

0 0

The initial conditions for the actual trajectory are unknown, but the deviation

from the nominal is assumed to belong to a gaussian ensemble with mean zero

and prescribed covariance matrix M . The M is assumed to be diagonal with
0 O

the general form
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M
o

where 2 and a 2 are the variances of the position and velocity deviations,
p v

respectively. The a 2 and cr2 represent parameters that can be varied for the
p v

study and the values that are used will be stated below. These statistics are

used in conjunction with a gaussian random number generator to establish the

initial conditions for the actual trajectory.

The noise corrupting the measurements is also assumed to be gaussian

and has mean zero and covariance matrix R k. The R k is treated as having the

form

R k

2

I °1
S

a __°and a 2 represent the variance of the noise in the local verticalwhere the
L S

2 2
and subtended angles, respectively. Frequently it will be true that o"L = O"s.

The values for these constants will be stated below.

The time interval between measurements provides another parameter for

the study. Several different intervals were considered, but only results relat-

ing to a sampling interval of 10 minutes will be presented. Since the period of

the orbit is approximately 90 minutes, this sampling interval results in meas-

urement data being available at every 40 degrees of subtended arc. The other

intervals that were investigated did not measurably change the conclusions
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suggested by this sample rate. It should be noted that Meditch [49] has shown

that the system is not observable if measurement data are available only at

intervals of 180 degrees of subtended arc.

5.2.1 When Linear Theory is Valid

The Kalman filter has been applied [49-53] to the problem of estimating

the state of a spacecraft for a variety of missions and has, in general, proved

to give satisfactory results. Mendelsohn [54] has discussed a case in which it

has not given satisfactory results, however. Many of these studies have dealt

entirely with the error covariance matrix Pk and have not involved any Monte

Carlo simulation. Such a procedure is entirely justified if the system were

actually linear. But since a nonlinear system is being approximated by a

linear system, the validity of Pk as a measure of the response of the filter

depends heavily upon the accuracy of the approximation. In this paragraph, we

consider a case in which the linear system (5.6) apparently provides a good

approximation to the behavior of the actual trajectory relative to the pre-

specified nominal.

For the remainder of this paragraph, let

2
o" = (5,000 ft) 2

P
2

o" = (5 ft/sec)2-
V

The initial conditions for the actual trajectory are selected from an ensemble

described by these statistics. For the data in Table 5.1, the initial deviations

are
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- -2239
6182
4192

X(to) - x*(to) = -3.9

3.5

-4.0

At any time tk, the deviation should be described approximately by

-%-1 o% -

if (5.6)is adequate. The error in X-component of position and of velocity are

depicted in Figure 5.1 for five orbital revolutions for one particular set of

initialconditions. This trajectory appears to be representative for the group

that were simulated.

It is clear from Figure 5.1 that the error is oscillatory and has an in-

creasing amplitude. In this case the errors do not appear to be significant,

so one would expect that linear theory is adequate. To see that this intuitive

idea is true, consider the following case.

2 2 degrees) 2
(;L = (_s = (0.I

Sampling interval = i0 minutes

All of the estimation policies described in Section 5.i.2 were applied to

this configuration. Results for Cases (L-l), (L-2), (N-l) and (N-2) are con-

rained in Table 5. l(a). Cases (L-3), (L-4), and (L-5) are described by

Table 5. l(b). Only two revolutions are studied for Case (L-5) because of the

number of computations that are involved.
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The results in Table 5.1 verify that the linear model is an excellent

approximation. First, observe that the axes* of the error ellipsoids provide an

accurate measure of the error in the estimate. Second, it is clear that the

results are essentially the same for every filter configuration. As a precursor

of things to come, it can be seen that rectification of the nominal does result

in a smaller actual error in many cases, particularly for the last two orbital

revolutions. The error covariance matrix is unaffected, however.

5.2.2 Orbit Rectification to the Rescue

In this paragraph a trajectory is considered for which linear theory

proves to be totally inadequate for the description of the state perturbation.

For this case, the statistics of the initial perturbation are taken to be

a = 50,000 ft.
P

a = 50 ft/sec.
v

Several different sets of initial perturbations were studied. In the results

below, these conditions were

40058

75488

35676
X(to) - x*(to) = -29.8

-125.4

3.5

In Figure 5.2 the error in the linear approximation in the X and X compo-

nents is depicted. Note that on the scale used, the errors in Figure 5.1 could

not be distinguished from the axis of abscissas. From the magnitude of these

The direction of the axis is not exactly in the direction of the coordinate axes

so the magnitudes are listed according to the coordinate axis that is most

closely aligned.
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Time Component

(L-l)

TABLE 5. l(a)

Filter Response when the Perturbations are Linear

G =5000ft;G=5 fps
P v

CrL = _Y = 0.1 degrees

Prespeclfied Nominal

5400 X, ft -5639
Y, ft 16082

Z,ft 4108

X, fps -20.7

Y. ,fps 0.8

Z,fps -6.1

10800 X, ft -4573

Y,ft 3016

Z,ft 2075

X, fps -4.3

Y, fps 3.4

_., fps -7.5

16200 X, ft 1457

Y, ft -9920

Z, ft 1899

X, fps I0.0

Y, fps 7.4

7., fps -6.8

21600 X, ft -1696

Y, ft 2258

Z,ft 497

_,fps -1.0
_', fps -0.2

Z,fps -7.3

27000 X, ft -3442

Y,ft 3800

Z, ft 1392

_:, fps -3.3

Y, fps -2.0

7-, fps -7.7

Error in

Estimate

Axes of Error

Ellipsoids

(N-i) (L-i) (N-I)

-5639 2468 2467

16069 16428 16435

4108 4798 4798

-20.7 18.7 18.7

0.8 2.9 2.9

-6.1 4.9 4.9

-4566 2078 2076

2999 14645 14658

2074 4599 4599

-4.2 16.6 16.6

3.4 2.4 2.5

-7.5 4.8 4.8

1463 1833 1833

-9934 12735 12734

1899 4405 4405

10.0 14.4 14.4

7.4 2.2 2.2

-6.8 4.7 4.7

-1695 1661 1660

2251 11322 11316

497 4218 4219

-1.0 12. S 12.8

-0.2 2.0 2.0

-7.3 4.7 4.7

-3445 1530 1530

3801 10262 10246

1393 4042 4043

-3.3 11.6 11.6

-2.0 1.8 1.8

-7.7 4.7 4.6

Rectification

Error in

Estimate

(L-2) (L-2)

-5608 -5605

16071 16044

4107 4107

-20.7 -20.7

0.8 0.8

-6.1 -6. i

-4516 -4505

2896 2858

2073 2O72

-4.1 -4.1

3.5 3.5

-7.5 -7.5

1565 1580

-10056 -10090

1898 1898

10.2 10.2

7.5 7.5

-6.8 -6.8

-1187 -1180

1625 1618

496 496

-0.2 -0.2

0.3 0.3

-7.3 -7.3

-2603 -2559

3000 2995

1397 1392

-2.3 -2.3

-1.1 -1.1

-7.7 -7.7

Axes of Error

Ellipsoids

(L-2) (N-2)

2478 2478

16433 16446

4798 4798

18.7 18.7

2.9 2.9

4.9 4.9

2100 2098

14638 14650

4599 4600

16.6 16.6

2.5 2.5

4.8 4.8

1846 1845

12598 12600

4406 4406

14.3 14.3

2.2 2.2

4.7 4.7

1665 1665

11214 11211

4219 4220

12.7 12.7

2.0 2.0

4.7 4.7

1535 1535

10346 10346

4044 4044

11.7 11.7

1.8 1.8

4.7 4.7
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TABLE 5. l(b)

Filter Response when the Perturbations are Linear

% --5000 % --5
a L = as = 0.1 degree

Time

54OO

10800

16200

21600

27000

Component

X, ft

Y, ft

Z, ft

X, fps

_', fps

_, fps

X, ft

Y, ft

Z, ft

X., fps

.Y, _s
Z, fps

X, ft

Y, ft

Z, ft

X, fps

Y, fps

7., fps

X, ft

Y, ft

Z, ft

"X, fps
Y, fps

Z, fps

X, ft

Y, ft

.z, ft
X, fps

%', fps

_, _ps

Prespecified Nominal

Error in Estimate

(L-3)

-5634

16062

4109

-20.7

0.8

-6.1

-4576

3019

2075

-4.3

3.4

-7.5

1461

-9943

1899

i0.0

7.4

-6.8

-1679

2220

498

-1.0

-0.1

-7.3

-3354

3675

1392

-3.2

-1.9

-7.7

Initial I CurrentState State

(L-4)

-3438 -5623

4281 16087

4734 4110

i. 8 -20.8

3.3 0.7

-5.4 -6.1

-3860 -4558

5165 3015

3605 2076

2.1 -4.3

4.7 3.4

-6.5 -7.5

-2296 1467

4628 -9905

2917 1900

1.5 10.0

3.1 7.4

-5.4 -6.8

-1229 -1656

5587 2252

3474 499

3.0 -1.0

1.5 -0.2

-6.1 -7.3

-1418 -3433

5499 3806

3397 1396

2.8 -3.3

1.7 -2.0

-5. I -7.7

Axes

of

Error Ellipsoid

(L-3) (L-4)

2468 2468

16422 16428

4798 4798

18.7 18.7

2.9 2.9

4.9 4.9

2079 2078

14635 14645

4599 4599

16.6 16.6

2.5 2.4

4.8 4.8

1834 1833

12728 12735

4405 4405

14.4 14.4

2.2 2.2

4.7 4.7

Rectification

Error Axes

in of Error

Estimate Ellipsoid

(L-S) (L-5)

-5585 2468

16072 16432

4108 4799

-20.7 18.7

0.7 2.9

-6.1 4.9

-4485 2090

2852 14629

2072 4600

-4.0 16.6

3.5 2.5

-7.5 4.8

No

Data

1661 1661

11316 11322

4218 4218

12.8 12.8

2.0 2.0

4.7 4.7

No

Data

1531 1530

10256 10262

4042 4042

11.6 11.6

1.8 1.8

4.6 4.7

No

Data
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errors, one would suspect that a linear estimation theory could not provide

satisfactory results. As shall be shown, this suspicion is entirely valid for

the case in which the original nominal is retained throughout the duration of

the flight. However, rectification of the nominal provides a striking improve-

Once again, consider the followingment in the accuracy of the estimates.

cases

2 2 degrees)2a L = o" = (0.1S

Sampling interval = 10 minutes

Results for cases (L-l), (L-2), (N-l), (N-2) are stated in Table 5.2(a).

It is interesting to examine these data in more detail. First, the error in the

estimate for Case (L-l) becomes intolerable and at no time does the error

ellipsoid describe the error. This disparity is a manifestation of the nonlinear

effects upon the estimated procedure. The error in the estimate during the

second and third orbits has a remarkable correlation with the error in the

For example, the error in the linear approximation oflinear approximation.

16200 seconds is

[x(16,200) - x*(16,200)] - _(16,200, 0)5_. ° =

-259,423

-196,697

-2,262

226.6

-304.1

-6.5

Comparing this with the error in the estimate given in Table 5.2(a), one

observes that the error can be attributed almost entirely to the linear approxi-

mation error. This is important when considering the effects of the estimation

policy (L-4).
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I

When the nonlinear filter (i. e., Case (N-l)) is used, an improvement in

the estimate is obtained, particularly during the first orbit. It is apparent that

the general behavior of the filter is not greatly affected and that it is the non-

linearities arising in the dynamics that are completely dominant. Again, the

error covariance matrix does not provide a valid measure of the actual error

in the estimate.

The most significant result appears when examining the effect of rectify-

ing the nominal at each sampling time. For this case, the error in the estimate

is greatly reduced compared with Cases (L-l) and (N-l) and does, in fact,

correspond with the errors predicted by the error covariance matrix. It is

also seen that the error covariance matrix does not appear to be significantly

different from the values obtained for the preceding cases.

The introduction of the nonlinear filter has an unexpected effect upon the

estimate judging by the tabulated data. In almost every instance, in the table,

the error in the estimate is larger although the error covariance matrix is not

affected to any great extent. These results suggest a problem that is consid-

ered in more detail in Chapter 7. However, the tabulated data are somewhat

misleading. For example, an examination of the error in the estimate of the

X component of position for the first ten observations indicates that the non-

linear filter provides a more accurate estimate at about half of the observation

times (six out of ten). This is typical of the response that is observed for all

components of the state vector and leads one to conclude that the nonlinear

term does not provide any appreciable benefit.
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TABLE 5.2(a)

Filter Response when a Prespeeifled Nominal is Inadequate

a =50,000ft;a =50 fps
p v

a L = a s = 0.1 degree

Time Component

5400 X, ft

Y, ft

Z,ft
X, fps

_,fps
7., fps

10800 X,ft

Y, ft

Z,ft

_:,_ps
_',fps
Z,fps

16200 X, ft

Y,ft

Z,ft

X,fps

Y,fps

Z,fps

21600 X, ft

Y,ft

Z,ft

X, fps
_r, fps

Z,fps

27000 X, ft

Y,ft

Z,ft

:_, fps

Y,fps

z,_ps

Prespecified Nominal

Error in Axes of Error

Estimate Ellipsoids

(L-l) (N-l)

-36783 -3456!

-52744 -38406

10599 9398

59.9 50.8

-23.7 -30. c

-24.8 -24.

-137029 -13632£

-93000 -85475

18163 _ 16819

106.9 103.4

-123.2 -127.8

-19.6 -19.2

-275523 -275099

-194631 -188665

8883 8553

228.5 226.4

-284.2 -288.3

-13.6 -14. i

-7. xl06 -6. xl06

11. xl06 i0. xl08

4871 5401

-12653 -11391

-8068 -7767

-14.5 -14.9

-11.x106 -11. x106

14. xl06 14. xl06

4998 5300

-16318 -15027

-14123 -13717

-7.2 -8.4

Rectification

Error in

Estimate

(L-l) (N-l) (L-2) (N-2)

4352 4418 6028 7420

18118 18492 -1898 -3176

16562 15771 10499 10597

20.1 20.2 3.9 7.0

4.7 4.9 -4.8 -5.2

19.6 18.7 -23.4 -23.5

2852 2941 2078 2742

15504 15550 -3730 -4276

12034 11425 18521 18615

17.5 17.4 2.1 3.6

3.3 3.4 0.5 0.6

14.4 13.7 -17.8 -17.8

2271 2356 10845 11244

13620 13620 -14723 -14884

9915 9410 9490 9517

15.5 15.2 16.5 17.2

2.6 2.7 8.9 9.1

11.9 11.4 -11.3 -11.4

1946 2061 7128 7348

12210 11564 -8310 -8281

8625 8188 6108 6110

13.9 13.2 8.8 9.3

2.3 2.4 9.1 9.0

10.4 9.9 -11.7 -11.7

1732 1861 -3567 -3357

11131 10385 987 1055

7736 7339 7067 7055

12.7 11.9 -3.3 -3.0

2.0 2.2 -1.7 -1.6

9.3 8.9 -4.1 -4.1

Axes of Error

Ellipsoids

(L-2) (N-2)

4038 4034

17306 17284

16507 16603

19.5 19.5

4.2 4.2

19.5 19.5

2528 2528

15099 15113

11991 12013

17.2 17.2

2.8 2.8

14.4 14.4

1989 1987

13264 13280

9873 9890

15.1 15.1

2.3 2.3

11.9 11.9

1700 11983

11961 1699

8588 8600

13.7 13.7

2.0 2.0

10.4 10.4

11138 11142

1518 1519

7709 7704

1.8 1.8

12.8 12.8

9.4 9.4
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Time

§400

10800

16200

21600

27000

TABLE 5.2(b)

Filter Response when a Prespeclfled Nominal is Inadequate

=50,000ft;_ =50 fps
p v

_L = _s = 0. i degree

Component

X, ft
Y, ft

z, ft
X, fps
_, fps
_., fps

X, R

Y, ft

z, ft
X, fps
_', fps
i, fps

X, ft

Y, ft

z, ft
x,_
.Y,fp8
Z, fps

X, ft

Y, ft

z,R
X, fps
_, fps
i, fps

X, R

Y, ft

Z, ft

_, fps
Y, _s

Prespecified Nominal

Error in Estimate

(L-3)

126 7280

-85954 -42255
10876 -13085

94.0 51.3
-55.4 -13.0

-24.8 20.7

-63848 16695

-202314 -49084
18615 -21664

222.6 55.1
-139.2 -21.8

-19.6 8.8

218704 18586

-235101 -55435

9876 -12567

252.1 55.8
-319.9 -23.3

-13.8 1.6

-6 x 106 4 x 106

11x106 36x106

8294 -10529
-12135 -4978

-7754 -227

-15.3 0.4

-11 x 106 5 x 106

13x106 13x106

9545 -8284
-13809 -5 x 103

-12500 -239

-10.0 -9.5

Axe s
Initial Current of

State State Error Ellipsoid
(L-4) (L-4) (L-4)

2618 4233 4352
24762 18534 18118

-9605 16511 16562

-27.7 20.6 20.1
-18.5 4.5 4.7

14.5 19.5 19.6

11685 2730 2852

9309 16115 15504

-17514 11997 12034
-9.1 18.2 17.5

-24.0 3.1 3.3

17.3 14.4 14.4

12733 2159 2271
80 14009 13620

-10006 9884 9915

-4.3 15.9 15.5
-19.6 2.5 2.6

9.1 11.9 11.9

33 x 106 1852 1946
34x 106 11564 12210

-51634 8601 8625
35 x 103 13.2 13.9
32 x 103 2.2 2.3

40.1 10.4 10.4

-37 x 106 1672 1732

-9 x 106 9746 11132

-54342 7725 7736
9 x 103 11.1 12.7

-38x 103 2.0 2.0

29.1 9.3 9.3

Rectification

Error Axes
in of Error

Estimate Ellipsoid
(L-5) (L-5)

5189 4058

-1129 17345
10541 16520

1.8 19.4

-5.7 4.3
-23.5 19.6

1653 2556

-3398 15085

18578 11995
1.2 17.1

0.5 2.9

-17.8 14.4

No

Data

No

Data

No

Data
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The effects of introducing estimation policies (L-3), (L-4) and (L-5) are

described in Table 5.2(b). The modification of the observation matrix does not

improve the filter behavior according to the data in the tabulation. These data

are somewhat misleading because a reduction of the error is actually observed

during most of the first orbital revolution. However, the nonlinear plant effects

become significant and prevent policy (L-3) from providing a significant

improvement.

Estimation policy (L-4) is observed to provide a significant improvement

in the estimate of 5_k until 21,600 seconds (i.e., through the first four revolu-

tions). It was observed that the accuracy of the estimate deteriorates catastro-

phically at the end of the fourth revolution. The reason for the sudden deteriora-

tion is difficult to explain. The estimate of the initial state is well-behaved

until this time, although the error is surprisingly large when compared with

the error in the estimate of the current state that is obtained directly from it.

It is significant that the error covariance matrix provides a reasonably accurate

description of the actual error in the estimate prior to 21,600 seconds. This

poliey appears to be worthy of further consideration.

Only two revolutions of the trajectory were studied for the smoothing

policy (L-5) because of the computational load involved. Use of the smoothed

estimate to establish the nominal appears to reduce, generally, the error

resulting from policy (L-2). The error covariance matrix is not significantly

changed, however, so the improvement would appear to be negligible.
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5.3 CONCLUSIONS OF THE COMPUTATIONAL STUDY

Several estimation policies have been employed in order to determine the

state of a spacecraft moving in nearly circular orbit around the Earth. A

variety of trajectories and instrument configurations were examined in con-

junction with these policies and the results suggest the conclusions that follow.

(1) Rectification of the nominal at each sampling time allows a striking

and significant extension of the linear theory to cases that suggest

the need for more sophisticated filtering techniques when the

nominal is restricted to be prespecified.

(2) When there is no plant noise, continual estimation of the initial

state and the subsequent use of this estimate in conjunction with

the nonlinear plant equation provides a significant improvement in

the estimate of the current state over the linear estimate. With

this policy, the nominal is prespecified so the number of on-line

computations that must be performed is significantly reduced.

(3) The nonlinear filter of Chapter 4 provides no useful improvement

over the results obtained with a linear filter.

Other conclusions are suggested by the results but not as vividly as the preced-

ing three. Some of these aspects (e. g., Case (L-3) is reconsidered) will be

discussed in Chapter 7.
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PRE_(3 _roE B_AI_IKT_O7 t_L_ED.

CHAPTER SIX

APPROXIMATION OF THE A POSTERIORI DENSITY

,FUNCTION FOR NONLINEAR SYSTEMS

It has been pointed out earlier that knowledge of the a posteriori density

P(Xk/k) provides all of the information required to solve the estimation and

control problems. It has also been stated that, in general, it is not possible

to determine P(Xk/Z_ in a convenient, analytical form from the recurrence

relation (IV) that describes the behavior of the density from one sampling time

to the next. In this chapter, an approach is presented that provides an approxi-

mation of the true density function when P(Xk/Z_ is nearly gaussian.

In Section 6.1, the general procedure is discussed and the means by which

this procedure is implemented is described. Attention is restricted primarily

to the estimation problem but the means of extending this approach to include

control terms is described. Relations defining the approximate conditional

density are stated in Section 6.2 for a scalar, second order system. Although

a scalar system is considered, the relations can be generalized to the multi-

variable case without additional conceptual difficulties. The notation required

to describe the relations becomes considerably more cumbersome, however.

The approximate density function for this system provides insight into the

effect of nonlinear terms on the character of the density. These aspects are

also discussed.

A means of extending the existing linear theory is discussed in Section

6.3. This discussion is related to estimation policy (L-3) of Chapter 5 and
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deals with an unsophisticated means for improving the behavior of the Kalman

filter. This technique is exercised in the numerical examples contained in

Chapter 7.

6.1 THE APPROXIMATION PROCEDURE

The procedure that is proposed here is a generalization of the technique

that is commonly used in applying linear estimation and control policies to

nonlinear systems and was stated earlier in Section 1.3. Suppose that it is

desired to estimate the state of the nonlinear, scalar system

xk = _(__i)+wk_I (6.i)

from measurements described by

zk -- _(x k) +vk (6.2)

The Wk_ 1 and v k are assumed to be samples from gaussian sequences with

known statistics.

To determine the a posteriori density function for this system, the

following procedure is suggested.

(A) Assume that fk and h k can be written in a Taylor series relative

to some nominal values of the state x__ 1.

To apply linear theory, one must assume that the perturbations

from the nominal can be described by the first order terms of the

Taylor series.

/z k(B) Assume that p(x k ) has the same form for every sampling time.

When the system is linear, this requirement is satisfied naturally

because P(Xk/zk) is always gaussian. Densities having this
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(c)

character have been referred to as being of the "reproducing

type" [56].

Assume either

(1) fk and hk are approximated by a specific number of terms

of the Taylor series expansion

or

(2) Allow the number of terms that are to be retained to be

/z kdetermined by the form assumed for p(x k ).

Then, introduce the expansions of fk and hk, and the density

functions for the noise sequences into (IV) and establish recur-

rence relations for the moments of P(Xk/zk ) subject to restrictions

(1) or (2).

The manner in which (C) is accomplished depends on the form of the

density assumed in (B). For example, in Chapter 4, P(Xk/zk ) was assumed

to be gaussian. Then, recurrence relations for the mean _k and the covariance

Pk were derived under the restriction that only the terms of the Taylor series

that permitted the gaussian assumption to be satisfied precisely were to be

retained. This procedure led to a generalization of the Kalman filter. In

Section 6.2, a gaussian approximation is derived that is different than that of

Chapter 4. The differences between the two formulations are seen in Chapter

7 to give significantly different numerical results and to point out the need for

caution in the manner in which the approximation is established.
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The form that is selected for the density (in accordance with the require-

ment [B]) is arbitrary. In this discussion, a form is selected that approxi-

mates a density function but is not a true density because the approximation

can sometimes assume negative values. This form has been chosen because

it allows one to make use of the fact that P(Xk/Z_ should be approximately

gausstan for many problems of practical interest.

It is possible to write many density functions as a series of orthogonal

polynomials associated with some distribution function [ 10,37 ]. When this

distribution function is gaussian, the orthogonal polynomials are the Hermite

and the resulting expansion is referred to as the Gram-Charlier series. An

asymptotic expansion closely related to this is the Edgeworth series [ 10 ].

These series will be stated here, but they are discussed in more detail in

Appendix C.

Consider a random variable _ with a known density function, and let x

be the normalized random variable

_-m
X --

a

where m and a are the mean and standard deviation of _. Denote the probability

density for x by f(x) and let ¢(x) represent the gaussian distribution with mean

zero and unit variance. Then, the Gram-Charlier expansion of f(x) is

1 1
f(x) = ¢ (x) [ 1 + _-. c3H3(x) + _ c4H4(x) + ...... ] (6.3)

The I-In(X) are the Hermite polynomials [ 10]. They satisfy the recurrence

relation
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Hn+l(X) = XHn(X) - nHn_l(X )

where

Ho(X) = 1

Hi(x) = x

The coefficients c i have been called quasi-moments by Stratonovich [ 57,58]

and are defined to be

U3
----- m i

c3 3
ff

c4 - 4 - 3
(I

o

The _k are central moments of _.

The Edgeworth expansion is closely related and is given by

1 10 2f(x) = _ (x) [ 1 + c3H3(x) + 4-_ c4H4 (x) + _.' c3H6 (x) + .... ] (6.4)

Only terms containing the fourth central moment and less have been included

in (6.3) and (6.4). Additional terms are given in Appendix C. Note that the

Edgeworth expansion contains one more term that the Gram-Charlier when the

series is truncated at this point•

of P(Xk/Z _ required by (B) shall be assumed to be truncationsThe form

of the Edgeworth expansion. In Section 6.2 the terms stated explicitly in (6.4)

are retained. The approximation for fewer terms is obtained immediately

from the general result of that section. The truncation of the expansion shall
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r

be considered to result in the higher order moments corresponding with the

same order moments of _(x). This assumption will be used in the determina-

k-1
tion of the prediction density P(Xk/Z ).

The approximation for P(Xk/Z_ using the procedure (A) - (C) is deter-

mined by establishing recurrence relations for the moments appearing in the

truncated Edgeworth expansion. The determination of the relations is dis-

cussed in Section 6.2.

Attention in this chapter has been restricted to the estimation problem.

Thus, in (6.1) the control variables _k-1 do not appear. If the control problem

were to be considered, the preceding discussion would remain valid. It would

be necessary, however, to assume nominal values for the control and to

obtain the Taylor series for fk in terms of perturbations in both the state and

the control variables. The problem of determining the control law is attacked

by the methods of Section 2.1 and is accomplished after the recurrence

relations for the moments of P(Xk/Z_ have been determined. The discussion

of Section 4.3 indicates the nature of some of the difficulties that are encoun-

tered in trying to establish the control law. Note that the determination of the

P(Xk/Z _ immediately provides the solution of the minimumprobability density

mean-square estimation problem, whereas knowledge of P(Xk/Z _ only supplies

the information that is required before solution of the control problem can be

attempted.
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6.2

approximate the a posteriori density for a second order system.

one must estimate the state of the system with plant

2
xk = _xk_1+gkxk_l+Wk_1

THE CONDITIONAL DENSITY FOR A SECOND ORDER SYSTEM

The procedure described in the preceding section shall be utilized to

Suppose that

and measurements

(6.5)

2
zk = hk_ + ekxk +vk _6.6_

These equations have an obvious relation to the Taylor series for a

general, nonlinear system. Thus it has been assumed that the nominal exists

and that (6.5) and (6.6) represent the Taylor series approximation including

the second order terms. Thus, we have assumed the form for the plant and

measurement equations explicitly. This has been done because it provides a

more definitive model than results from the policy in which only the terms that

permit the desired form for P(Xk/zk) to be achieved are retained.

The derivation of the relations describing the moments involves three

basic steps. (This can be reduced to two if the first measurement is not

available until t 1, although the statistics for the initial state are prescribed at

t .) In this discussion, a measurement is assumed to be obtained at t , so
O O

a relation for P(Xo/Zo) must be established explicitly as well as general rela-

k-1 k
tions for p(xk/z ) and P(Xk/Z-" ). Each of the three steps shall be discussed

immediately below and the primary results are stated. A detailed derivation

is given in Appendix D.
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(1) Determination of P(Xo/Zo)

The initial a posteriori density is obtained from (2.15)

P(Zo/Xo) P(X O)

P(Xo/Zo) = p(Zo ) (2.15)

The distribution for the initial state has been assumed to be gaussian. The

conditional density p(Zo/X o) is determined from (6.6) and the distribution for

v k •

p(Zo/Xo) = p(z ° - hoX ° - eoX2o)

2
z -h x -e x

1 o oo oo)2k exp- (v 2 r
O

Since e is non-zero, this density is obviously no_._tgaussian. This term
O

must be approximated in order to obtain a P(Xo/Zo) having the form (6.4).

This approximation is accomplished in the following manner. The p(Zo/Xo)

can be rewritten as

z -hx

1 o 00)2p(Zo/Xo) = k exp-v _( 2
r

o

2 3 24

_1 (-2e z x +2h e x +eoXo)
o o o o o o } (6.7){exp 2 2

r
o

For an alternate approach, refer to Chapter 4. Introduce (6.7) and P(Xo) into

(2.15) and rewrite as

1
P(Xo/Zo) = kconeXp-_ (

A

X -

o _o )2 [exp B(xo)]
1"[

O

(6.8)
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where k
con

represents terms that are independent of x
O

h2
1 Df o 1

2 2 2
r m

O 0 O

h z

I)f 2 oo a= o +
r m

O O

(including p(Zo) ), and

2 x 3 4e -2z x +2h +e x
Df o oo oo oo

S(Xo) - 2 ( 2 )
r
o

o

If the measurements were linear, then e would be identically zero ando

and rr2o would be the mean and variance of P(Xo/Zo). Thus, they are a scalax

version of the Kalnmn filter equations.

It is necessary to determine the moments of P(Xo/Zo) from (6.8) in order

to put the a posteriori density into the form required by (6.4). This is not

immediately possible because of the last factor. If exp B(Xo) can be approxi-

mated by a power series, then it becomes a simple matter to determine the

moments. One could approximate this term by

÷ 1 B2(Xo) (6.9)exp B(Xo) = 1 + B(Xo) 2_

Numerical results indicate that this is not an adequate approximation in many

instances. In this chapter, the B is rewritten in terms of the linear estimate

A
. That is, one sees from the definition of B that it has the form

0

B(Xo) = b2X2o+b3X3o +b4 4
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It is possible to rewrite this as exp flo exp Bl(_o) where Bl(rlo) is defined to be

B l(rlo) = fll_o +_ 2rl_ +_ 3_3o + fl4rl4o

and

Df ^
= (x° _ )"qo o

Then, the approximation

2
exp B = exp flo[1 + Bl(rlo) + Bl(_o)] (6.10)

is introduced. The exponential exp rio does not involve _o' so it can be included

in the constant k . This approximation proves, not unexpectedly, to provide
con

better results than are obtained using (6.9). Using (6.10), (6.8) can be

rewritten as

1 rlo2 2

p(_o/Zo) = kconeXp - _ (---=") [1 + BI(_ o) + Bl(_o)]
0

(6.11)

The moments E [rllo/Zo ] (i = 0, 1, 2,3,4) are easily determined from (6.11).

The central moments of P(Xo/Zo) are related to these moments according to

= + E ['Qo/Zo]E [xolzol

Df ^
= X

0

_o)2/Zo] Df 2E [ (x ° - = Po

= E[rl2o/Zo ] - E2[rlo/Zo]

_o)3/Zo] DfE [ (x ° - = tJ- o

/z - 2 E 3
E[Vl3o/Zo ] - 3E[_ ° olPk - [Vlo/Zo]
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E [(x0 - _o)4/Zo] =Dr _o

= E[_4o/Zo] - 4_toE[_o/Zo] - 6p2oE2[_o/Zo] - E4[_o/Zo]

From (6.4) the approximation to P(Xo/Zo) is seen to be

P(Xo/Zo) = k exp 1 +1o - 2(_o )211 3! c3H3(_o) +_!c4H4(_o)+_'!c3H6(_o)]10 2

where

x-_
Df o o

o Po

Df o

e 3 = --_

Po

0
-3

c 4 -- _

Po

The complete definition of this density is contained in Table 6.1 and in

Appendix D. To repeat, the principal approximation involved in determining

P(Xo/Zo), aside from the general form, occurs in the simplification of exp B.

This approximation reoccurs in the determination of P(Xk/zk ) from (IV).

k-1
(2) Determination of P(Xk/Z )

The prediction density is determined from (2.13).

k-i k-i
p%/z ) =  p%_l/z )P/Xk/Xkl dXk_1

P k-1Assume that (Xk_l/Z ) has the form prescribed by (6.4).

(6.5) and the density for Wk_ 1 that

(2. 13)

It follows from
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2

i Xk- _-i - _Xk-1)2 (6.12)
P(Xk/Xk_l) = k exp-_(

w qk-1

It becomes clear upon a moments reflection that the integration required by

(2.13) cannot be directly accomplished. Fortunately, this is not necessary.

k-1
Because the approximation calls for the moments of P(Xk/Z ), con-

sider their direct calculation from (2.13). For i = 1,2, 3,4,

i- k-i i k-i

_t_/_. I : ..F_p%/_)<_<

Substitute (2.13) into (6.13) and iterate the integrals. Then

i- k-1 zk-1 i / ]EExklzi: .FP%_ll){,Fxkp(xkxk-1)'_'_'k-_

The innermost integration is easily accomplished and produces

2

E[_I:__II: _kxk_1+gkXk_l

: +

3/ 2 2 3EExk__1i: 3O__lCfkxk_l+gkxk_l)+(_xk_I+gk__l)

(6.13)

(6.14)

4 / 4 2 .2 2 2 4EiXkXk_l] = 3qk-1+ 6(_Xk-1+ gk_k-1j %-1 + ¢fk_k-1+ gkxk-1)

The moments E [x_/z k-l] are easily determined from (6.14). To this

point, no approximations have been introduced other than the original assump-

tions associated with the form of P(Xk_l/zk-1) and with (6.5) and (6.6). In

establishing the E [x_/z k-l] , it is found that for this problem, the fifth through

eighth central moments of P(Xk_l/zk-1 ) are required. These have not been

computed (although they could be determined when the first four moments of
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the a posteriori density are established). To approximate these moments, we

assume that they are identical with the gaussian moments. That is, we let

_5 = ta7 = 0

6

_t6 = 5Pk

This constitutes the only additional assumption involved in determining

/z k-1
p(x k ). The equations are summarized in Table 6.1 and Appendix D.

(3) Determination of P(Xk/Z _

The P(Xk/Z _ is determined from (IV).

= (iv)

p(zk/zk'l )

The derivation is quite similar to that provided for P(Xo/Zo) in Section 6.2.1.

In that case, P(Xo) was gaussian, whereas its counterpart in IV (i. e., the

k-1
P(Xk/Z ) ) has the Edgeworth form. Thus, the approximation of the factor

exp B(Xk) that arises through the nonlinearities in the measurement device is

performed in exactly the same manner. The algebraic manipulations are

more involved in this case because the Hermite polynomials must be rewritten

in terms of the centered variable

Df ^

^

where {k

is referred to Appendix D.

is the linear estimate. For the details of the derivation, the reader

The general relations that result are stated in

Table 6.1.
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The moment relations for simpler density approximations are obtained

without difficulty from the tabulated equations. In fact, one obtains another

gaussian, but nonlinear, filter directly by eliminating all of the terms that are

associated with the Hermite polynomials H 3, H4, and H6. This gaussian filter

is distinctly different from that of Chapter 4 and shall be seen to give different

(and more satisfactory) results in Chapter 7.

It is hoped that the discussion has been sufficiently clear to indicate the

ease with which more terms in the Edgeworth series or in the power series

approximation of exp B 1 could be included. This system illustrates all of the

problems that would be encountered in including additional terms in the

expansions.

The relations in Table 6.1 that describe the calculation of the central

moments of a posteriori densities can be described in general by two terms.

The first term represents the moments associated with the linear moments

gk and _ . To these moments are added perturbation terms that account for

the nonlinearities. It may not be immediately obvious that this is the case for

P(Xo/Zo) and P(Xk/zk), but it is more readily seen for P(Xk/zk-1 }. It is

particularly interesting to note the effect of plant nonlinearities on the sym-

k-1
metry of the distribution. For the sake of discussion, suppose that P(Xk_i/z )

4
is gaussian so that _k-1 is identically zero and '_k-1 is 3Pk_ 1. Then, the

_k/k-i has the form

2^ 4 3 4 4 ^2 6
_k/k-1 = 6_gkPk-1 ÷ 33_kgkXk-1Pk-1 + gk (2 Pk-lXk-1- 2Pk-1)
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Naturally, if the plant is linear, then gk is identically zero and so

 k/k-1 = 0.

However, when gk is non-zero, it is clear that _k/k-1 in general will be non-

zero thereby reflecting the loss of symmetry of the distribution. The sym-

metry of P(Xk/Z _ is also destroyed in general by nonlinear measurement

terms. The approximation of the a posteriori density by a gaussian distribu-

tion (e. g., in the case of the Kalman filter) might be suspected of resulting in

a mean value that is biased away from the true mean because of the unsym-

metric nature of the true density. This is seen to indeed to the case in some

of the numerical results of the next chapter.

2, _k' Vk all dependIt should also be noted that the central moments Pk

upon the measurement data because the term Bl(Vlk) contains the data explicitly

in the coefficients. This would have to be taken into account in the derivation

of optimal control policies using this density approximation.

Relations defining the moments of the a posteriort density, particularly

P(Xk/Z_, can be determined using different approximation techniques. Itfor

has already been noted that the exp B(Xk) can be written immediately in a power

series in x k rather than first rewriting it in terms of the centered variable _k:

It is not surprising that the former does not give as good an approximation for

an equivalent number of terms in the power series. Another variation is pos-

sible in the way in which the _k is defined. One can follow the procedure used

in Chapter 4 and include all terms of the second order in x k in the _k and w2k"

Then, one obtains
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1 h_ - 2ekz k 1
_ +

2 2 2

_k rk Pk/k-i

_k = 17k ( _ + 2 )

rk Pk/k-1

It would appear that this procedure might be the most preferable because the

B(Xk) is reduced to

B(Xk) = b3x _ + b4x _

2
It is no longer necessary to approximate the factor exp b2Xk, and this would

seem to be an advantage. Unfortunately, it has been found that this procedure

leads to a biased estimate and in many cases, particularly when the variance

of the noise is small, provides poorer estimates than are obtained with the

Kalman filter. Since the minimum mean-square estimates are theoretically

unbiased, the bias must be attributed to the error in the approximation of the

density. Thus, one would expect the bias to be reduced as additional terms in

the Edgeworth series are included. This has been found to be an accurate

description of the behavior that is observed in the numerical studies. Con-

siderations pertaining to errors in the approximation of the density are

discussed in Chapter 7.

6.3 ON EXTENDING THE USE OF LINEAR FILTERS

In this section we offer a non-rigorous technique for including the effects

of terms of greater than first order of the Taylor series representations of the

plant and measurement equations. Consider the system (6.1) and (6.2) again.
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Assume that a nominal x__ 1

6xk

6z k

where

exists and let (6.1) and (6.2) be represented by

1 x2k + (6.14)= f_6xk_1+_f_'6 -1 Wk-1

1
= l_(Sx, k +_hl_'6Xl_ +V k

IX
6xk_I = xk_I-x__I

IX

_ xk-fk(__1)

IX

5z k = z k - hk[fk(Xl__l)]

(6.15)

To apply a linear filter, one must represent the evolution of 6 x k by a linear

difference equation and 6 zk by a linear relation with the state. The obvious

procedure for (6.14) and (6.15) is to neglect the second order derivatives f_'

and h_'. Consider an alternative procedure.

At the sampling time tk, one has an estimate of the state 6 Xk_ 1. Let

5 Xk_ 1 be written as

_k-1 = 6_-1 - 6_k-1

Then

6_ = _6__I+_'(__i- 6__i)6__I+Wk_I

} f_, i ~ + wk 1 (6.16)= (fk+ 6xk-1)SXk-1-2 fk'6Xk-laXk-1 -

Now, neglect only the term } f_'5Xk_l. As long as 5 xk_ 1 is sma11

compared with 6Xk-l' one would expect (6.16) to provide a better approxima-

tion of the behavior of the plant than when the second order effects are
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1
neglected entirely. Then, the factor (f_ + _ f_t 6 _k_1 ) will serve as the linear

plant approximation. The prediction of the state at t k is seen to be given by

6Xk/k_1 : + 7 6xk_l)6xk_1 (6.17)

and the variance is

2 1 ^ ,22 2
Pk/k-1 = (f_ + 2 _' 5 Xk_l) Pk-1 + qk-1 (6.18)

Compare this result with the more precise relations found in Table 6. l(b).

k-1
Suppose that P(Xk_l/Z ) are gaussian so that

_k-1 = 0

4

'Ok_ 1 = 3Pk_ 1

Then, the predicted mean and variance are seen to be

5Xk/k-1 = (fl_ +1 ,, ^ 1.,, 22 fl_ 5 Xk_l) 6 Xk-1 +2 I1¢ Pk-1

and

2 1 _,, ^ 2 2
Pk/k-1 = (f_ +2'f'k 5Xk-1) Pk-l+q_-l+_f_ ' 4Pk-1

Thus, the approximations (6.17) and (6.18) are seen to cause the terms

1 fvv 2 and 3 4
k _k-1 _ f_v Pk-1 to be neglected from the mean and variance equations,

respectively. In many cases, one would not expect this omission to be

significant.

A similar procedure can be employed for 5 z k. The predicted estimate

Xk/k-1 is used in rewriting (6.15) as

6 Zk = _ + i h_' 5 _/k-1 )6Xk + Vk (6.19)
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The equations (6.16) and (6.19) are linear in the state perturbations. In

the use of the linear filter, the plant Fk and measurement coefficients Hk can

now be treated as

i -I! ^

Fk __Df_+2_5xk_1

Of course, if the nominal is rectified with 5 Xk-1 at every time tk, then after

the rectification

5Xk_ I = 6 = O.

so the second order derivatives are eliminated.

This technique is applied in Chapter 7 and produces some interesting

results.
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(a)

TABLE 6.1

The A Posteriori Density Function

The A Posteriori Density P(Xo/Z o) for the Initial Sampling Time

P(Xo/ZO) 1 (Co)2= k exp-_ [io

_O =

10
+ _.t c3H3(_o) +_.I c4H4(_o) + _-.I c23H6 (_o) ]

A

X -X
O 0

Po

_t
o

C3 = - -'_

Po

0

c4 =-_-3

Po

Central Moments:

= _ +E['qo/Z o]
O 0

Po --

2
2 E[,qo/Zo] _ E2[_o/Zo ]

3/z - [_o/Zo]p 2 E 3_o = E[Tlo o ] - 3E - [_o/Zo]

4/z .'Co = E[_ ° o ] - 4_oE[_o/Zo] - 6p2oE2[_o/Zo] - E4[_o/Zo]

and

E [_lo/Zo ]

E[n:l
i i 2

+ E [r_oBl(Tlo)] + E ['NoBl(r_o)]

I+E[BI] +E[B 2]

The expected values are obtained relative to the density

P(rlo) = ,4_'_
o

122



where

TABLE 6.1 (continued)

h2
1 o 1

2 2 2
r m

O o O

h z

2 oo .._--_ (--T+ )_o o
r m

o o

(See Appendix D for further details. )

Measurement Nonlinearity Terms:

2 2 4

Bl(rlo) = Blrlo + B21rlo + B31r_o +/341rlo

÷

/321 = b2 + 3b3_o + 6b4

A

/331 = b3 + b4_o

where

/341 -- b 4

e z
O O

b2 - 2
r

o

h e
O O

b 3 = _ --_
r

o

2
e

o

b 4 = __
2r 2

o
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(b)

TABLE 6.1 (continued)

The Prediction Density P(Xk/zk-l)

1 2

P(Xk/Zk-l) = kk/k_lexp - _ (_k/k-i)

1 I0 2 -
[i + _. c3H3(_k/k_ I)+ _, c4H4(%/k_ I) + _.,-.,c3H6 (_k/k-1)]

_k/k-1 -
Pk/k-1

_k/k-i
c3 3

Pk/k-1

=_-3
c4 4

Pk/k-1

Central Moments:

: + +

2 = E 2. k-1 ,,2
Pk/k-1 [Xk/Z ] - Xk/k-1

= E 3/zk-1 " 2 ,,3
_k/k-i [Xk ] - 3xk/k-lpk/k-I - Xk/k-i

Vk/k-i

where

2- k-1
E [xk/z 1

4-k-i ^

= ZlXk/Z ] - 4Xk/k_lUk/k_ 1

2 _ 2 - k-i= qk-1 + E[Xk_l/Z ]

6^2 2
- Xk/k-lPk/k-1- 4/k-1

+ 2f.kgkE[__l/zk-l]

2 4 , k-1

+ gk E [Xk_i/z l
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and

TABLE 6.1 (continued)

3-k-1 2 ^ .3El 3 /zk-1] + 3_gkE [ 4 /zk-1]
: _%__Xk/k__z[_/_ I +% Xk-1 Xk-I

3_k_Z,5 /,k_,,+,_Z,4/,k-,,+ Xk_1 -

.4E( 4 /zk-1)+,,E,__/-1_1_'_+_ _-_

+ _%_.(__i/_)+ _-i

+_¢.4_,,,,.,.-_,,-¢_4_,,,,.'-_,

(_ 2 +^2z _/k-l) = Pk-1 Xk-1

^3 2
E(x__i/k =1) " ,_ + 10Xk_lPk_ I= _k-1k-1+io i_k_i

'_,4-/-" ° '_&"k-'÷_°'_= 5pk_1+ Xk_l__l

_1 p ^6+15 - k-1 +xk-1

Eta,1/k-ll = ^ 6 + +

2.^ 5 2 ^7
+ LXk_IPk-i + :_-i

t s /k-11 =
E Xk_ 1

,,5

+xk_ 1

7Pk_ I + _ -

28 _6 2 ^8+ __1%_i + _-i
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(c)

TABLE 6.1 (continued)

The A Posteriori Density P(Xk/Z_

1
- +_'. c3H6(_k) lP(Xk/zk ) = kk exp _ (%)2[ 1 + _,.c3H3(_ k) + _.,c4H4(%) i0 2

_k =
Pk

c3 =--" {
Pk

--_-s
c4 4

Pk

Central Moments:

2 2/zk.Pk = E[_ j

3/zk

- E [_k/Z k]

3E [_]k/zk] pk E 3 /z k-_ _ [_ J

_k = E[_/_k] - %E[_/_'k]- 6p_S2[_/zk]- _4[_/_k]

where

B(_)
= 2
Df 1 + BI(_ k) + B l(_k)

= 3_ c 1 i0 2Df i + 3Hs(BR) + _.,c4H4(_ k) + _. CsH6(B k)
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TABLE 6.i (continued)

2 2 2

_k rk Pk/k-1

^ 2 _"k + _/k-1
_k = nk ( 2 2 )

rk Pk/k-1

The BI(Tlo) are defined in the same manner as in Part I with the

trivial change of subscript. The Hi(_k) and the E [v_/z k] are defined

in Appendix D.
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CHAPTER SEVEN

NUMERICAL COMPARISON OF LINEAR AND NONLINEAR

FILTERING TECHNIQUES

It has already been pointed out that simpler approximations can be

obtained from the density approximation described in the preceding chapter by

neglecting either terms of the Edgeworth expansion or terms of the power

series expansion of exp B(Xk). Each of the approximations in the resulting

hierarchy describe a minimum mean-square estimator (i. e., the conditional

mean provides the estimate). In this chapter, the adequacy of each density

approximation is investigated by examining the behavior of the estimates of

the state of a dynamical system. These estimates are compared with those

obtained from the linear estimator of Chapter 3, the nonlinear estimator of

Chapter 4, and the modified linear estimator of Section 6.3. The system that

is considered is simple. Nonetheless, it appears to illustrate the important

characteristics as clearly as the more complicated systems that have been

investigated.

The mathematical model and the computer program are described briefly

in Section 7.1. The parameters and estimation policies that are considered

are also discussed. The approximation of the true P(Xk/Z _ by a gaussian

density provides an interesting class of filters. They are discussed in

Section 7.2. The filters resulting from the Edgeworth expansion approxima-

tion (i. e., the nongaussian version) are investigated in Section 7.3. Conclu-

sions suggested by the results of Sections 7.2 and 7.3 are stated and

discussed in Section 7.4.
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7.1 THE GENERAL PROBLEM

Consider a scalar system with plant described by

= xk_I+wk_1 (7.i)

The state is to be estimated from measurement data that are related to the

state according to

2
zk = x k+v k (k=0,1,...) (7.2)

The initial state x and the plant and measurement noise sequences w., v.
o J 3

are gaussian with known statistics.

E[Xol = a

_ 2
E[(x ° a) 2] = mo

E[Vk] = 0 = E[Wk] for allk

2 2 2EIv ] = r k ; E[Wk] = qk

2 2 2
The variances m o, r k, qk will constitute the basic parameters for the

2 2 2

study. The mo and r k will always be greater than zero, whereas qk will be

set equal to zero in many cases. The actual values assigned to these param-

eters will be specified later.

The estimation policies are based upon the use of perturbation theory.

Two different nominals will be utilized. First, the nominal will be chosen to

be E [Xo], and this value will be retained throughout the observation policy.

As an alternative choice, the nominal will be rectified at each sampling time to

be the minimum mean-square estimate (as in Chapter 5). The results obtained

with each of these choices for the nominal will be compared. In each case,
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the perturbation equations have the form

6_k = 6,,__i+_k_I

26,.k = + +

where

_"_-1= "_-1-"_-1

6xk =Xk-q

(7.3)

(7.4)

A digital computer program was developed to simulate this system and

to exercise several different estimation policies. The initial state and the

noise sequences were obtained from a gaussian random number generator [61].

All of the computations were accomplished using double precision arithmetic.

The results that appear in subsequent sections represent a single

realization of the random sequence. The size of the computer program

coupled with the nature of the double precision computations on the particular

IBM 7040 that was used precluded the possibility of a complete Monte Carlo

simulation. That is, it did not appear to be feasible to obtain the number of

runs necessary to compute significant sample means and variances (i. e.,

apparently at least 1000 realizations are required [31]). Instead, the data

presented below represent the behavior of each filter when the same noise

sequences are encountered. It is reasonable to expect in the comparison of two

filters that the one that gives the better response for a given noise realization

will be generally more effective. Enough cases were simulated to indicate
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that the results that are presented are representative of the type of behavior

that shouldbe expected.

The filter configurations that are examined are to a major extent obtained

from the density approximation derived in Chapter 6. As has been mentioned

earlier, different density approximations are obtained from the most general

expression by eliminating the Hermite polynomial terms (i. e., H6, H4, H3)

and/or by including only one term in the power series expansion of exp B

rather than two. Additional density approximations are provided by the results

of Chapter 4. This gaussian approximation is investigated in Section 7.2 to

show the effect of different approaches and to indicate that not all approxima-

tions should be expected to provide satisfactory results.

7.2 FILTERS BASED UPON A GAUSSIAN DENSITY

Four different filters are investigated in this section; two of them are

linear whereas the _ther two are not.

(G-l) Linear (Kalman filter): This filter is described in Chapter 3.

(G-2) Linear filter with modified system matrices: The Kalman filter

is utilized, but the system matrices are modified in accordance

with the discussion of Section 6.3. In this example, the linear

relation between the measurement and state perturbations is

=
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(G-3) Gaussian nonlinear filter Number 1: The Hermtte polynomial

terms H3, H4, and H6 are eliminated and the linear moments

are modified because of the presence of the nonlinear measure-

ment term exp B. See Section 6.2 for further discussion.

(G-4) Gaussian nonlinear filter Number 2: The gaussian approximation

of Chapter 4 is considered.

These four filter configurations were exercised with a variety of noise

realizations and a priori statistics. The results for a particular noise

realization is depicted in Figures 7.1 through 7.3. These data indicate the

relative behavior of the filters when acting upon the same measurement data.

The system yielding the results shown in Figure 7.1 contained no plant

noise. The standard deviation of the initial perturbation was assumed to be

10 percent of the mean value of the initial state.

E[Xo] = 1

E[(x °- 1)2] Dr= m2O

= 0.01

The initial perturbation was obtained from a gaussian random number generator

and was

5x = -0.04478927
0

Before an observation is processed, the estimate of the perturbation is zero,

so the initial error is 6 x .
O

In Figure 7. l(a), the measurement noise has a standard deviation equal

to 1 percent of the nominal state
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EE J
= 0. 0001

The standard deviation of the error in the estimate (i. e., pk ) was found

to be approximately the same for all configurations. Thus, only the standard

deviation from the linear filter (i. e., Case G-l) was plotted.

Note first that the error in the linear estimate exceeds the statistic on

the eleventh measurement and remains larger thereafter. Although taken by

itself, this behavior is not impossible, it nonetheless describes a common

occurrence in the application of linear filters to nonlinear problems. As was

noted in Chapter 5, a sufficiently accurate measurement device will often

cause the statistic to be a poor measure of the actual error because of the

importance of the neglected nonlinear effects [ 31 ].

The general character of the response of filters (G-2) and (G-3) is simi-

lar to that observed with (G-l), but the magnitude of the error is considerably

reduced for these two configurations. It is of further interest to note that

(G-2) and (G-3) give essentially the same results.

When the filter of Chapter 4 is used, the results are very disappointing.

In fact, the error inthe estimate is seen to be considerably increased and

suggests that the estimate contains a bias error. Since the conditional mean

is theoretically unbiased, a bias error could enter only because the approxi-

mation of the true density is poor. One would expect that the error would be

decreased by improving the density approximation. Although not discussed at

length here, such an improvement was attempted and the response was observed

to improve.
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The results shown in Figure 7. l(a) are based upon a single prespectfied

nominal. The filter response, when the nominal is rectified at each sampling

time, can be seen by referring to Figure 7. l(b).

Cases (G-l) and (G-2) are theoretically identical.

Under this condition,

It is particularly interesting

to observe that Case (G-l) in Figure 7. l(b) is essentially identical with Case

(G-2) of Figure 7. l(a). Thus, the modification of the system matrices for

policies based on a single nominal has the same effect as rectification of the

nominal at each sampling time.

Rectification of the nominal is seen to cause all four cases to give

basically the same results. This implies that the nonlinear effects are

eliminated to a major extent. This becomes more true as the number of

samples that have been processed increases.

The standard deviation of measurement noise is increased from 0.01 to

0.1 for the results shown in Figure 7.1(c). One observes that the four filter

configurations provide very similar behavior. This result indicates that the

magnitude of the measurement noise is more significant than the nonlinearities.

Further verification of this statement was provided by finding that rectifica-

tion does not appreciably influence the results. These data have not been

included.

When noise is included in the plant, the filter response is affected in a

striking manner. As is known, the presence of plant noise prevents the error

variance from vanishing and causes it to approach some nonzero value. As is

seen in Figure 7.2, plant noise with a variance of 0. 0001 leads to a limiting
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value of approximately

within three samples.

Pco _ 0.00455

One is hard-pressed to judge that one filter provides a

more satisfactory response than any other. Naturally, as the level of plant

noise decreases, one approaches the behavior shown in Figure 7. l(a). It was

also found that rectification does not affect the results of Figure 7.2 in any

significant manner.

2
The nonlinear effects can be amplified by increasing m since the initial

o

state perturbation is based upon the initial statistics. To obtain an additional

2
insight into these effects, the m was chosen to be

O

2
m =0.1

O

This led to an initial perturbation of

8x = -0.14163609
o

The behavior observed in Figure 7. l(a) is aggravated by this increased pertur-

bation. The results for a noise-free plant, measurement noise variance of

0.0001, and prespecified nominal are depicted in Figure 7.3. The inadequacy

of the standard deviation Pk as a measure of the error is revealed more clearly

than in the preceding data. The linear filter (G-I) and the filter (G-4) are seen

to exhibit a definite bias because of the lnvariance of the error. The fact that

(G-4) leads to a deterioration of the accuracy of the estimate is even more

apparent. Possibly the most interesting aspect of these data stems from the

realization that the modified linear filter (G-2) produces consistently better
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results than the nonlinear filter (G-3). However, all of the filters lead to

results that consistently disagree with Pk" This case will be discussed further

in the next section.

One would expect, judging from past results, that rectification would

improve the filter performance. It is noteworthy that when the nominal is

rectified, the results do improve and, in fact, the response is described quite

adequately by (G-2) in Figure 7.3. Thus, once again for this example, Case

(G-2) appears to be equivalent with rectification of the nominal.

7.3 ESTIMATORS BASED UPON NONGAUSSIAN DENSITIES

In this section, the Kalman filter is compared v_ th the filters provided

by the Edgeworth series approximations. The results are based upon the

approximation

1 2
expB 1 _ I+B I+_.,B 1

where B 1 is defined in Chapter 6. It was found that it was necessary in most

instances to use the two-term approximation as opposed to

expB 1 _ I+B 1

in order to obtain sensible behavior for the second and fourth central moments.

This aspect is discussed briefly in Section 7.3.2.

The nonlinear filters are identified by the highest order Hermtte poly-

nomial that is included. Thus, the estimate provided by most general expan-

sion is referred to as the H 6 filter. Simpler models for the nongaussian

densities yield, then, the H 3 and H4 filters.
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7.3. i Nonlinear a Nongaussian Filters

Let us consider the response of this group of nonlinear filters for the

cases investigated in the preceding section. In all of these cases, let

E [Xo] = i

First, suppose that

2
m = 0.01

O

2

rk = 0.0001

2

qk=O

The initial perturbation is

5x = -0.04478927
o

and the measurement noise realization is identical with that contained in the

data of Figure 7.1.

The results based on the Kalman filter that were included in Figure 7.1

are repeated in Figure 7.4. It was found that the gaussian, nonlinear filter

and the H3 filter provided essentially the same response. This is seen by

comparing Figure 7.1 and 7.4. In addition, the H4 filter exhibited essentially

the same response as the H6 filter. Possibly the most significant difference

that is observed is that Pk for the H4 and H6 filters is considerably larger than

for any of the lower order filters. This results in a greater sensitivity of the

conditional mean to current measurements. This is reflected, unfortunately,

by the larger error that is observed during the fourteenth through seventeenth

samples. The error is compatible with the statistic Pk' however.
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A prespecified nominal is used in the data for Figure 7.4(a). When the

nominal is rectified, the results obtained with all of the filters tend to be

essentially the same. These data are depicted in Figure 7.4(b) and again

indicate the manner in which rectification seems to eliminate the nonlinear

effects.

When the measurement noise is increased (as was done in Figure 7.1(c) ),

the linear filter gives the same response as the gaussian, nonlinear filter

(G-3) and as the H3 filter. The H4 and H6 filter again are adversely affected

during the fourteenth through seventeenth samples.

Plant noise causes the same response for the H3, H4, and H6 filters as

was described for the nonlinear gaussian filter (G-3) in the preceding section.

These results will not be repeated here.

When the nonlinearity is made more significant by increasing the state

perturbation, the nonlinear filters are seen to provide a response that is con-

siderably different from that observed for the gausstan estimators. As seen

in Figure 7.5(a), the Pk for the H3, H4, and H6 filters is larger than for the

gausstan filters. Thus, the Pk appears to be a more accurate measure of the

error for these filters. Also note that the Pk is a random variable for the

nonlinear filters, so the Pk is not as well-behaved. Comparison of Figures

7.3 and 7.5 indicate that the error in the estimate from the modified linear

filter (G-2) is subject to less violent changes, but that the H. filters givel

estimates that appear to cope with the nonlinearity more adequately. These

filters are more sensitive to the actual measurement noise, however.
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Orbit rectification improves the estimate for every case but particularly

for the linear filter. The H4 and H 6 filters appear to provide the better res-

ponse during a major portion of the interval. However, these filters again

are more sensitive to the large measurement noise values that are present in

the fourteenth through seventeenth samples. These results are presented in

Figure 7.5(b).

7.3.2 A Poor Density Approximation

One difficulty manifested itself in some of the cases that were simulated

although not in any of the results that have been presented above. It was found

that the second and fourth central moments occasionally assumed negative

values. This was observed for every one of the nongausstan filters, although

it occurred most frequently among the approximations that used

exp B I = i + B I.

The inclusion of the second order term eliminated the problem to a major

extent, although it did not eliminate it entirely when a large state perturbation

was experienced. This suggests that it might be appropriate to include the

third order term (i. e., 1/3! B31) in order to improve the approximation of

exp B 1. Alternatively, the negative moments could be interpreted as implying

that additional terms of the Edgeworth expansion should be included in order to

of P(Xk/Z _. As has been pointed out, the truncatedimprove the approximation

Edgeworth expansion is not a true density because negative values are assumed

for some values of x k. This could result in erroneous values for the moments.

148



I I I I I

0 0

I °

I I I I I I I I o

_OT _ _,_p,e_ _z_.zo.z.z:_

149



q

I I I I I I

iii .oo

0

0

e_ o
i_ i . 0

ml c_laEtoc_._

@

n I I I
r.D _ ¢q 0

I
/

/

/
I

/

I I I I
• • ° °

0 0 0 0

_OI x o:_m_aT_e H u I .XO.LZH

150



7.4 SUMMARY OF RESULTS

Several conclusions can be drawn from the numerical results of the

preceding sections. Although the data are based on a very simple system,

more complicated systems have been investigated and appear to corroborate

the conclusions that are stated below.

Before proceeding to any statements regarding the merits and demerits of

the various estimation policies, it is necessary to recognize the following.

(0) Unless the measurement noise and/or the plant noise is "small",

the linear filter gives essentially the same result as the considerably

more complicated nonlinear filters. No attempt shall be made to

clarify the circumstances which one can determine if the noise is

sufficiently "small" to warrant consideration of the nonlinear

filter.

With this provision in mind, it is possible to consider the relative behavior of

the filter configurations.

Of the three conclusions stated at the end of Chapter 5, the one dealing

with rectification is further substantiated in this chapter, and the one dealing

with the nonlinear filter of Chapter 4 can be strengthened.

(1) Rectification of the nominal at each sampling time causes the

behavior of the linear filter to be considerably improved. After

a sufficiently large number of measurement samples, the linear

filter yields essentially the same response as considerably more

complicated systems.
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(2) The gaussian, nonlinear filter of Chapter 4 is not satisfactory.

It does, in fact, appear to yield an estimate that contains a bias

which causes it to yield poorer results than even the linear filter.

Thus, one must be cautious when deriving an approximation of

a posteriori density.

Several other significant results were obtained. The filter configuration (G-2)

based upon modification of the linear system matrices and concomitant applica-

tion of the linear filter provided a number of suggestive results.

(3) The filter configuration (G-2) yields the same behavior for the

prespecified nominal that is observed when rectification of the

nominal is introduced. This estimation policy was utilized in

Chapter 5, but did not provide such striking results. This can be

attributed to the fact that the plant nonlinearities were not included

in the modification of the system matrices because of the inherent

difficulties. As was observed, it was these effects that were

dominant, however.

(4) The gaussian nonlinear filter obtained from the general approxima-

tion of Chapter 6 yielded results that are comparable with (G-3).

Since the filter (G-3) involves many more computations, one would

question its usefulness. It might prove useful in the determination

of a control policy if one were dealing with that problem.

The Edgeworth approximation provided three filter configurations.

Their behavior shall be summarized in the following manner.

152



(5) The tt4 and H6 filters yielded esse_tally identical results, whereas

H3 can be more closely identified with the gaussian nonlinear

filter (G-3).

(6) The conditional variance is generally larger than that for the

linear and other lower order filters, and in many cases appears

to be a more adequate measure of the error in the estimate.

(7) The estimation error for the H6 filter is more sensitive to the

measurement noise realization than is the lower order filters.

This would appear to be a manifestation of the larger values

observed for the variance.

The sensitivity of the filter response to the method of approximation is

certainly an important consideration. For the example discussed in this

chapter, the following conclusions become apparent.

(8) The approximation of the nonlinear measurement effects (i. e., the

factor exp B1) is of supreme importance. It was found that the

B 1 should be written in terms of the centered variable

 k-:k

where Ck is the linear estimate rather than leaving it as a poly-

nomial in x k. Furthermore, the number of terms retained in the

power series approximation of exp B 1 also has a significant effect.

In general, at least terms including the quadratic must be included.
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It was found that the quality of the approximation of exp B 1 could be

judged to an extent by the behavior of the second and fourth central moments

_k and Vk" These quantities, which should be positive, sometimes assumed

negative values. This was particularly true when exp B 1 was approximated

by the first order terms of the power series.
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CHAPTER EIGHT

SUMMARY AND CONCLUDING REMARKS

The general problem of determining the optimal control policy for a

stochastic, time-discrete, dynamical system was posed in Chapter 1. The

general solution of this problem, assuming knowledge of the a posteriori den-

sity P(Xk/Z_, was presented in Chapter 2, but more specialized problems

were considered thereafter. Attention was restricted primarily to the prob-

approximating the density p(_k/_Z_. The adequacy of each approximationlem of

was evaluated by examining the behavior of the resulting minimum mean-

square estimate. Estimates from both linear and nonlinear filters were

compared. The class of linear filters that were considered included several

that are based on techniques for extending the range of applicability of the

general linear theory.

In the following section, the problem dealt with in each of the preceding

chapters is described, and the principal results are summarized. The major

conclusions of the study and suggestions for future research are discussed in

Section 8.2.

8.1 SUMMARY

CHAPTER 1: The optimal stochastic control problem is described in the

following manner.

according to

where _k-1

Suppose that the state of a dynamical system evolves

is the control vector and .W.k_l is a random sequence with known
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statistics.

by

The control policy is to be based upon measurement data described

"_k = -hk(-'_' Y-k) (II)

where Xk is another random sequence, independent of the -_'k-l' with known

statistics. Then, choose the control vectors to minimize the expected value of

N

vN = wi%, i-ll (InE 
i=1

The general approach to the solution of this problem and the related problem

of state estimation is then described.

CHAPTER 2: The general stochastic control problem stated in Chapter 1 is

considered. In particular, it is shown that knowledge of the a posteriori den-

sity p_k/z_ provides the general solution of the minimum mean-square error

and the stochastic control problem. The p(_x_/z_ isestimation problem then

shown to evolve according to an integral recurrence relation. Relations des-

cribing the prediction and smoothing densities p(___+y/Z_ and p(..Xk_y/Z _ are

also derived. In some instances, the application of the general relations to

a specific system is simplified by working with the equivalent relations involv-

ing characteristic functions. These relations are derived.

CHAPTER 3: The linear, gaussian, optimal stochastic control problem is

considered. It is shown that the solution of this problem separates into the

dissimilar problems of state estimation and deterministic, optimal control.

Furthermore, it is seen that the separation occurs because the error covari-

ance matrix of the estimation problem does no__._tinvolve the measurement data.
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The solutions of the three aspects of the linear estimation problems (i. e.,

smoothing, filtering, and prediction) are presented.

CHAPTER 4: Attention is restricted primarily to the problem of approximating

the a posteriort density for a system with the plant equation

and the measurement data

-- + (I-N)

=

The noise sequences are assumed to be gaussian and the approximation

is established under the constraint that the density pQxk/z _ is gaussian. This

procedure leads to a generalization of the Kalman filter of Chapter 3. It is seen

that the error covariance matrix becomes a function of the measurement data.

Furthermore, it is seen that the choice of the most recent minimum mean-

square estimate as the nominal leads to a considerable simplification of the

equations.

The problem of determining the control policy for a linear plant from

measurements that bear a nonlinear relation to the state is considered briefly.

It is suggested that the Separation Principle for completely linear systems is

no longer valid because of the dependence of the error covariance matrix upon

the measurement data.

CHAPTER 5: The problem of estimating the state of a spacecraft in a nearly

circular orbit from the angular measurements provided by a horizon sensor

is considered. A nominal is assumed and the results of Chapters 3 and 4 are
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utilized in this numerical investigation. Several estimation policies are

implemented. Briefly, these policies are-

(l) Kalman filter using a single prespecified nominal

A

(2) Kalman filter using the _Xk_1 as the nominal at each sampling time

tk (the policy of updating the nominal is referred to as rectifica-

tion)

(3) Kalman filter with modified system matrices and prespectfied

nominal (the manner in which the system matrices are modified

is discussed in more detail in Section 6.3)

(4) Continual re-estimation of the initial state using linear theory

with subsequent updating of the estimate of _k using the nonlinear

plant equations

(5)

(6)

Rectification using a smoothed estimate

Nonlinear filter of Chapter 4 (referred to as (G-4) with a pre-

specified nominal)

Nonlinear filter (G-4) with rectification.(7)

Of these seven estimation policies, rectification was found to significantly

extend the range of linear theory and provided the most satisfactory results in

those cases in which policy (1) was found to be inadequate. Policy (4) was also

seen to provide excellent results and has the advantage over the rectification

policy that the system matrices do not have to be recomputed at each sampling

time. It was established that the estimates provided by the nonlinear filter did

not, in general, differ from those obtained with the linear filter. Only the
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nonlinear measurementeffects were included, however, so this apparent

ineffectualness could be attributed in part to the dominant role played by the

plant nonlinearities. This filter is discussed further in Chapter 7.

CHAPTER 6: A procedure for approximating the a posteriori density P(Xk/Z _

is proposed. It is suggested that this procedure be implemented using a

truncation of an Edgeworth series to approximate the density at each sampling

time. The P(Xk/Z _ associated with a second order, scalar system

2

xk = fkXk_l + gkXk_l + Wk_ 1

zk = hkX k+ek_+v k

where Wk_ I and vk are gausslan is approximated by establishing recurrence

relations for the firstfour moments of the distribution. Itis shown that the

moments for the prediction density P(Xk/zk- _ can be obtained without difficulty.

It is necessary to approximate the nonlinear measurement effects which appear

as a factor exp B. This is accomplished by expressing B as a polynomial in

terms of the variable

where _k is the linear estimate of xk, and then expressing exp B I as a power

series

i 2
expB I = I+BI+2-_BI+...

Several different approximations can be obtained from the general result of

this chapter including a gaussian approximation that differs from that found in

Chapter 4.
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Finally, a technique is suggestedfor improving the approximation

provided by linear theory. This procedure results in the use of second order

terms of the Taylor series expansion of the plant and measurement equations.

CHAPTER 7: The filters deriving from the density approximations of Chapters

3, 4, and 6 are applied to the problem of estimating the state of the system.

=  k-1+Wk-1

2

--  k+vk

R was found that the variance of the plant and/or the measurement noise had

to be "sufficientlyN small before the nonlinear filtersprovided results that

differed significantlyfrom those obtained with the linear filter. In the eases

in which the linear and nonlinear filtersgave different results, the response of

the linear filterwas benefitted significantlyby rectificationof the nominal.

Furthermore, the filterof Chapter 4 was observed to yield generally unsatis-

factory results. The estimate provided by this approximation appeared to be

biased.

The gausslan filterobtained from the general results in Chapter 6 gave

satisfactory results in most cases but did not perform significantlybetter

than the modified linear filter. In fact, the modified linear filterappeared to

provide the same behavior with a single prespecified nominal that the linear

filterexhibited with rectification. The two policies result in essentially

equivalent response.

q
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The most general nonlinear filter consistently yielded values for the

conditional variance that were larger than those obtained from the linear filter.

In many cases, the larger values appeared to more adequately describe the

error. This filter was more sensitive to the magnitude of the actual measure-

ment noise realization. A more complete summary and discussion of the

numerical results is given in Section 7.4.

8.2 GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

A procedure for approximating the a posteriori density function has been

suggested and has been seen to lead to a straightforward means of accomplish-

ing this objective. Several questions arise concerning the quality of the

approximations that result. The behavior of the specific approximations con-

sidered in this investigation and the conclusions that derive therefrom are

discussed in Section 7.4 and shall no_ttbe restated here. In the remaining

paragraphs, some general questions relating to the application of the theory

and the method of approach are discussed. Topics that require additional

investigation and areas for future research are included throughout the

discussion.

I. The mathematical model upon which the study is based assumes a time-

discrete formulation. Some of the reasons for the use of this model have been

discussed in Chapter 1. On the other hand, one major difficulty is created by

the use of a time-discrete model that must be overcome before the theory can

be applied. In particular, many dynamical systems are described by differen-

tial equations rather than difference equations. Although these differential
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equations can be solved numerically, it is often impossible to obtain an analytic

form for the solution. Thus, the application of the perturbation theory sug-

gested here is complicated by the difficulties inherent in determining the partial

derivatives required for the Taylor series expansion of the plant equation.

This difficulty is circumvented in using a linear theory by performing the

linearization in terms of the differential equations. It is, then, a straight-

forward matter to establish the state transition matrix and thereby to establish

a linear difference equation. It was seen in Chapter 5 that the nonlinear plant

effects can be dominant if specialized techniques such as rectification cannot

be used. Thus, this aspect cannot be ignored and would appear to require

considerable additional research.

IIo The relations that are obtained by the application d this nonlinear pertur-

bation theory are considerably more involved than the well-known results for

linear systems. Their implementation for use with a multidimensional sys-

tem would appear to lead to a significant computational burden. Thus, one

should examine the possibility of developing special techniques that would

enable the utilization of linear theory for problems which at first glance would

seem to require more sophisticated methods. This has been shown by example

to be possible for estimation problems. It is not clear if analogous policies

can be developed for systems involving control considerations that will

prove to be as fruitful. In many control problems, the nominal control policy

is selected so that prescribed trajectory constraints are satisfied. Thus, one

cannot arbitrarily modify the nominal without first verifying that the constraints
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will be satisfied by the new nominal. This restriction would seriously hamper

the use of a rectification policy. Thus, the development of specialized methods

for extending the range of applicability of linear theory for control problems

appears to be worthy of consideration.

III. The validity of the approximations has been tested by observing the

behavior of the conditional mean (i. e., the minimum mean-square estimate)

for specific nonlinear systems. It has been found that the estimates behave

satisfactorily in many cases and do provide an improvement relative to the

output of a linear filter. However, the approximations were observed to

deteriorate quite radically for many problems in which the nonlinear plant and

measurement effects were large. The deterioration was marked by the appear-

ance of negative values for the second and fourth central moments. Since

this is theoretically impossible, such behavior must be attributed to the in-

accuracy of the approximation. The truncated Edgeworth series that were

used for the approximation are not true probability density functions because

they can assume negative values for some values of the argument. These

approximations do not provide the only possibility that could be investigated.

interesting to assume that P(Xk/Z _ belongs to a particular class ofIt would be

parametric distributions (e. g., the Pearson distributions). The parameters

would then be determined from the system characteristics. The use of a true

density for the approximation might cause the moments to behave more

satisfactorily.
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IV. Examination of the behavior of the moments provides an indirect method

of judging the quality of the approximation. It would be desirable to compare

the approximation with the actual a posteriori density. This could be done for

a simple system with a static plant and nonlinear measurements corrupted by

gaussian noise. That is, consider the system

x k = x for all k

zk = hk(X) + v k

Let x and v k be gaussian and independent.

be written as

p(zk/x) p(x)
p(x/z_ =

p(z_

It is possible to form p(zk/x) and p(x) and

p( .b : rp(zk/x)p(x) 

so the density can be written explicitly.

The a posteriori density can

k 1 z i - h(x) 2

= II exp-_ [ ri " ]P(zk/x) kk i = i

and

p(x) = k exp- 1 x-a 2x
O

Thus, one could compute p(zk/x) for this simple system and compare it with

the results given by the approximation. One could also examine the p(zk/x)

to determine some asymptotic properties of the density and verify that the

approximation exhibits these characteristics.
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V. Little consideration has been givento the problem of establishing control

policies for nonlinear systems. In Chapter 4, it was suggested that the

Separation Principle is not valid for a linear plant when the measurements are

nonlinear. The density approximation of Chapter 6 could be used to develop

perturbative control laws, and it would be interesting to investigate the policies

that result. In fact, these approximations might have their greatest use in the

development of nonlinear stochastic control policies. This should provide a

fertile area for future investigations.
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APPENDIX A

GAUSSIAN A POSTERIORI DENSITY FUNCTION

Let the state be n-dimensional and suppose that m measurements are

available at each sampling time.

to the relationship

The conditional density evolves according

where

and

p /zk_1) (A.I)

k-i

P(_Xk/[ ) =
/zk-

]'P(._xk_1 _ 1)P(_.x._/_k_l)dX_k_1

k-i /zk-I z
pz(._kl_): .pp(_.x__ )PZ(.z.kl%)dx_k

The initial density p X(Xo/Z.o) is determined from

Pz(._o/X)P x(__o )

px(._o/%): .Fpz(.%/xo)Px(_x.o)dx__,_
(A.2)

The conditions that the plant and measurement equations must satisfy

so that p(K_k/Z__ can be represented by

1 ^ T-1
p(__/zk) = kk exp _ [(__ ._k)] (A. 3)- -%)Pk-1%-

shall be determined.

The initial state and the measurement and plant noise are assumed to

have gaussian distributions.

i [% a )TMolx_o )] (A.4)px(.Xo) = k oexp-_ -_ -a
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p_ = kwexp-_[ Q ] (A. 5)

pv%) = k exp-_[ R ]Y
(A.6)

First, determine the density p X_o/Z_o). Since the measurement noise is

additive, it follows that

p%/_o) = kve_ - _ _% - (A. 7)

Expand h in a Taylor series• It can be written as
"0

1

_%1 = h_o_*o>+Ho6X_o+_% (A.71

where

H
0

Df

Df

8h1
0

v-_x1 " • •
0

8h n
O

8X 1 "..
0

6 xTj 15 x
"o o --_

5 xTj25 x
-'_ O "-O

5 xTjm6 x
_ O _

m

Oh1
0

a_
o

8h n
O

a_
o
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The ji are defined as
O

ji Df=
0

The superscript on the h
O

82h i 82h i
O ... O

aXlaX 1 8XlSX

a2hi a2hi
O ... O

%XnSX 1 ax 8xn n

is used to designate the i th component of the vector

h •

"O

Using the expansion in (A. 7) and keeping only the quadratic terms, the

p z(z.u/Xo ) becomes

pz(_z/x) = k exp- 1 T o16Zv _ [6 R - 25zTR-IH 6x
--O O O --O

zTR -1
+6xTHTR-IH-oo o o6X-o-6--o o _o ]

The term involving rl must be rewritten in terms of 5 x . Let
--O --O

Df
= R-15z

Y-o o -o

Then
m

_oY'u = [6xTj16X-oo -o'"6 J 6x] Yo

m

i=l

m

Yo

m

6x T i i"-o ( _JoYo

i=i

)6x
"-0
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Then,

= k exp--[6 R z - 6x
V _- "0 "0 0 0 -'0

m

_ ji i,_
+ 6xT[HTR-1H _ oYoj°x-o}

"-0 0 0 0

i=1

(A. 8)

Using (A. 4) and (A. 8), one obtains

exp - _

m

JJo
i=1

-2[5_aTM -lo +SgRolHo ]6x]

Define

m

Z ii M-1p-1 =Dr HTR-1H _ J oYo+
0 0 0 0 0

i=1

and

6_T Df= _ :lHo aTM-1-o [5 R + 6 ]P-- O 0

Using these definitions and completing the square, it follows that

p z_/x)p%) = k k exp- 1 aTM-16xo v _ [6zTR-16z +6 a
-'O O --O " O --

- 6 xTp-15 _ } exp - 1 l(6xu-'o o -o _ [(fix_o-6x_u)TP: -6X_*o)] (A. 9)

Integrate with respect to 5._o. Then,

,_Pz(__o/X)Px(.X,.o)__.u

k k

_ xo v 1 g 15zk exp-7[6 R: +6aTM 6a
0

0

_ }
-'o 0 -'0

(A.ZO)

176



where k
0

is the normalization constant.

ko = [ (2E)n(det Po ) ] -1/2

From (A. 2), (A. 9) and (A. 10), one sees that

1 __u)TPol(5 x __.o)]pX(Xo/Z ) = k oexp-_[6x-6 -6

This can be rewritten as

p%/_) = koe_P-_[%-%) vo %-

where

= x*+6_
-'O -'O "-O

The density has the desired form at t .o

Assume at tk that

i ^ T -I

- %_ Pk_% _%_

_, /zk+l.Now, derive pt._ 1 _ • First, form

p%+1/%)= k e_ - 1[%+1 T -iw : -_+9 % %: - _+: >}

Assume a nominal _ and let

Expand f-k+l

in 6Xk

(A. 11)

(A. 12)

(A. 13)

(A. 14)

:k+i= _+imP

in a Taylor series about _ and retain only second order terms
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_ f T -1_+_ _+_ % %+_-&+_--

%+1_ %+1

6 T _-i- _+1% (A. 15)

where

Df

6_k+l = _+i - &+_t_

and

Df

F k =

Df

1

1
a_

i Df
G k =

I M

1 6x k5_ G k

n

_ Qk 6%

• # •
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For the moment, let

-- +1

Then, it can easily be shown that

n

T -1

i=l

Using (A. 13) through (A. 15), we obtain

1 T -i
p(x:k/z_P(Xk+l/Xk) = kkk w exp _ [6- _+1% 6%+i

Let

n

exp - _ - +

i=1

- + 6 ^Tp-i-9"[6_+1%1Fk /!k k ]6%]

n

Bkl =Dr FkQklFk - Z Gk wi+ Pk 1

i=l

= [6_+iQk Yk+5 P

By completing the square, (A. 16) becomes

p_/!Sp_+/%_= kkkw

(A. 16)

e_-E _+i - -

exp - '_{(6Xk _k
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Integrate with respect to _k

kkkw

kNk

1 T -i
exp - 7 {6Xk+lQk 6Xk+l

-__

where the normalization constant kNk is

kNk = [(2TT)n IB k i ]

The 6_BklSy.k contains _k+l'

quadratic.

-1/2

so this term must be approximated by a

n

T-1 - _i i.-1
Bk [ Fk Qk- iFk + Pk I Z= _ LikO0 J

i=l

(A. 17)

n

Z " -__-_ _a_-_Gk00 ] (FkQk_IF k +=t,-(,_Qa__,,_+_;5-*
i=l

Let

Df T -i -i

[Ik+l = FkQk-iFk + Pk (A. 18)

SO

n

v _ i i-i-I

t=1

n

-1
Assuming that IIk+ 1( Z Gk OOi)has sufficiently small

i=1
expansion [ 59] is approximately

norm, the Neumann series

Bk =

n n n
-1 -1 i " -1 -1 i " -1 _i i--1

i=l i=l i=l

180



_L

= _% k )_-_( k% 6%+_

n

._,-_ -_ _ -_ -_ .+_ k_÷_(Z%__ _x_
i=l

n
^T -i -i i " -i T -i

i=l

n n

^T -i -i i " -i G i i -i p-i ^

i=l i=l

where all terms of greater than second order have been neglected.

n

i -i -I
Consider ( ZGk_k;iPk 6&.

i=l

The i are scalar quantities, so

n n

Z.a

i=l i=l

_16Xk÷l. Denote the i th _1 TBut _ = row of by _i " Then

n

i i-i -iUk(_ Hk+IP k 6&

i=1

n

i_-i p-i ^ T

i=l

Let

E k

n

Z i -i -i

i=l
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Then

_kPk_k+Pk6%

^T-i-i T-_ ^T-i-i
+ [25_P k Rk+IFkQ k +6Y_kP k Rk+iEk]6_k+l

T -i -i T -i T -i F -I+ET -i E
+62_k+l[Q k FkRk_IFkQ k +2EkRk_ I kQk kRk_l k]6Xk÷l (A. 19)

The introduction of (A. 19) into (A. 17) gives

i T -i -i -i T -i T -i -i T -I
exP-216%÷l[Qk -Qk FkRk+iFk% - 2ZkRk+iFkQk -ZkRk+iZk]6%÷l

26_TP-I--IF -i i
- _k k I_(+1[ kQk ÷2Zk]6Y_k÷l} (A.20)

The density pZ_k+i/Xk÷1) is

i T -i

p z_k+l/Xk+l ) = kvexp - 2 [Z_k÷l-_k÷l) Rk+l Z_k÷1 - _k÷l )_

Following the procedure used for pz(_/Xo), this becomes

i T -i

pz(9.k+i/Ytk+l)= k exp _ [5v - %+iRk_ _k+1}

I. T T R-I
exp -_ _6Y_k+l[Ilk+I k+iHk+l -

T -i
-26%+iRk£1Hk+16_k+1]

m

ji i ,
k+lYk+l] 5_k+l

i=l

(A.2i)
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Then, one sees that

kNk

1 T -i

exp - _ [6 z.k+lRk+l 6_'k+l

^T -i -i -i -i ^

+ 6/_k(Pk - Pk Rk+iPk )5_k]

1 T -i _ -
exp- _ [6%+iPk+lSXk+l 25_+iPk+llS/_k+l } (A. 22)

where

-1 Df Q_I -1 F -1 F T -1 T -1 -1 ET_-I EPk+l = -Qk kKk+l k% -2ZkKk+lFkQk - kllk+l k

m

T -1 i l
- Jk+lYk+l

t--1

^T Df ^T -i -i F -i+i E T -i
5_k+1 = [6/_kPk Ilk+l( kQk 2 k )+5"_k+iRk+lI'Ik+l]Pk+l

Completing the square and integrating with respect to 5 _k+l gives

p%+d'--5 kkkkvkk+_kNkexp-_{6%+1Rk;16%+1

^T -i -i-i -i ^ ^T p-i .,,
+5/_k(Pk -Pk Rk_'lPk )5/_k- 5/_k+1 k+10/_k+l J (A.23)

where

kk+l = [ (211)n I Pk + i I ]

Division of (A. 22) by (A. 23) yields p(___+l/k+_.

-1/2

i ^ Tp-i ^
= kk+lexP-_[(5/f_k+l-5!!k+1) k+l(5/f_k+l-5/f_k+l)}

1. ^ Tp-i ^
: kk+lexp- 7 t(-.Xk+l-/!k+1) k+l(-Xk+l- !£k+1)] (A. 24)
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APPENDIX B

MATHEMATICAL MODEL FOR THE SPACE NAVIGATION PROBLEM

The digital computer program utilized for the study presented in

Chapter 5 has been developed by the AC Electronics Division of General Motors

Corporation to investigate the general problem of guidance and navigation for

interplanetary space vehicles. In this appendix, the general equations that

are relevant to the problem of Chapter 5 shall be stated with a minimum of

accompanying discussion.

The motion of the spacecraft has been assumed to occur about a single

central body as described by (5.1), so analytical solutions of the equations

are possible. Thus, the position and velocity at any sampling time are

obtained from explicit analytical expressions rather than by numerical inte-

gration. These expressions are well-known [60].

For this model, it is possible to obtain explicit expressions for the state

transition matrix appearing in (5.6) [55].

Let

When the nominal is contained in the X-Y plane, the _i have the form

1 L '15:1L °1: 2 r:i:,51 ; =

0 _33 0 _36

(B. I)
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_3
[_41 _42 0

--j° i o
L o 0 _63

_4 = _54 _55

0 0 _66

Let the eccentric anomaly at tk be Ek and let the eccentricity and mean

angular rate be e and n. Define Sk and Ck as

sinE k = Sk ; cosE k = Ck

Then, the elements of the submatrices are

= 1 [ C2(l+e_e 2)
_11 (l_e)2(l_e Ck )

+ Ck(2+e+2e2-e3 )

-2- 5e+2e 2+3EkSk]

0i= A-7 r
(l-e)(l-e Ck) Sk (l-Ck)

_21

Jl - e 2

(1-e)2(l-e CQ
[SkCk(l+e) + Sk(2-e) - 3EkCk]

= i [Ck2 + Ck(-l-2e+e2 ) + i]
_22 (l-e)(l-e Ck)

(Ck - e)

_33 - (l-e)

_i4 = (i-e) Sk + 2]n(1-e Ck) [-Ck(l+e)

_i -.e2 [Ck(2_e)
_15 = (l-e)n(l-e Ck) + 2Ck(l+e ) - 4 - e + 3EkSk]
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2

t25 = _ 1
n(1-e Ok--_ [SkCk(2+e+e2 ) + 2Sk

Sk(1-e )

n

(l-e) 2(1.e Ok) 3

(1-e) (1-e Ck) 3

+ 8kO,k(-2.Se+2e5

+ 8k (l"l'e+3e2-e 5 + 3Ek (Ck_e)J

_51 = ._-e

(1-e)2(1-eck)-3

_52
nS.

(l-e) (1-e Ck,) 3

+ C/_(,?,+Se) - Ck (l+e)

- 1 - 3e + e 2
+ 3EkSk]

EeC_- ,.Ck ÷_÷._ 2j

<}44= _ [Ck('e+e'?') 2C_(I-/-e)+ ?Ck +1-e](1-e Cl_a

(1-e)(i-e Ck,)3 - SkCk(',_-e )
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Sk%/1-_---_ 2_ 2C k +2-e]- [e Ck
(1-e Ck)3

_55
(1-e Ck)3

[-C3(2e+e2+e 3) + C2(4+5e+5e 2)

-Ck(l+3e ) - 2 - 3e - e 2 + 3(l+e)EkSk]

(l-e) Ck

_66 - (1-e Ck)

The computation of the transition matrix is carried out in an in-plane

cartesian coordinate system and then transformed using a rotation matrix

into the basic nonrotating cartesian system. The evaluation of the two body

equations and the transition matrix equations provides the nominal and actual

trajectories and the linear model.

A horizon sensor has been assumed to be available to provide data for

navigation purposes. This instrument provides a measurement of the direction

of the line of sight to the center of a reference body relative to a nonrotating

reference frame and a measurement of the angle subtended by the reference

body. These angles are depicted in Figure B-1.

These measurements are described by the three angles, _, 5, and _.

The local vertical is defined by the elevation angle _ and the azimuth angle 6.

The _ is defined to be positive when the vehicle is below the X-Y plane and 6

is measured counterclockwise from the X axis.

X 3
-- - -1 (B.--2)
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Center
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Vehicle
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v

Figure B-1. Geometry of Angular Measurements

X

r x
sin-1 2

-1
• COS

X 1

where

9. 9._ y2_ 1/2
R = (XI+X 2 ...3,

The subtended angle fi is given by

(B-3)

where

r
-1 o

= sin _- (B-4)

r = radius of reference body.
O

Both the first and second order partial derivatives are required for the

navigation procedure. The first order observation matrix Hk is, in general,
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More specifically, this can be written as

H k =

m

0a__q._ aa__q__ a___q__

8X 1 8X 2 8x 3

8X I

06 86

8X 2 8X 3

8X 2 8X 3

0 0 0

0 0 0

0 0 0

(B-5)

where the derivatives taken with respect to the velocity components of the state

vector (i. e., X 4, X 5, X 6) are identically zero as indicated. Denote the non-

zero submatrix as Hl(t Q.

-sin a cos 6

It follows that

-sin _ sin 6 2+ 1/2--(X 1

R R R 2

2
-sin 2 6 cos 6 0

X 2 X 1

-X 1 tan/3 -X 2 tan/3 -X 3 tan

Next, let

R 2 R 2 R 2

1
Jk

(B.-6)
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where

2
ay

32y

8XlSX 2

2
8y

8XlaX 6

2
8y

8X28X 1

2
8y

eeoeeeeeeeeeo=eeeeooeoe

2
8y

8X6X 1

2
8y

2
ay

There is no dependence upon velocity, so the partial derivatives relative to

velocity components are identically zero.

i
submatrix by Jl(tk) (i = 1, 2, 3). Then,

m

j1
11

1
Jk(tk) = J21

u31

1 1

J12 J13

1 1

J22 J23

j1 T1
32 u33

Denote the upper left-hand (3x3)

(B-7)

1

Jll

-sin
X 2

[sin25 - 2--1
R 2 ]

1
J12

X 2 sin _ cos 5

R

sin26
[2___
R2 + 2

X 2

1
J13 = cos5 (1-2sin 2_)

R 2

1

J21

X 2 sin _ cos 5

R
2 +

[ R 2

sin 2 5

2
X2
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1
J22

- sin
(cos 2 5 -

2

2X 2

R 2 )

1
J23

sin5 (i- 2 sin2 _)

R 2

1

J31
cos 6 (1-2 sin 2 u)

R 2

jl
32

_ sin6 (1 - 2 sin 2 _)
R 2

1
J33

2 _ i/2- 2 sin_ (XI+X )

R 3

2

Jll

2
= J21

2
J31

2
J12

j2
22

2
J32

2
J13

2
J23

2

J33

(B-8)

j2
11

2XIX 2

2 2)2
(XI + X 2

2
J12

-1

2 +X_X 1

(1 - 2 sin 2 5)

2
J21

-1
m

2+ 2
X 1 X 2

(1 - 2 sin 2 5)
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2

J22

-2XIX 2

2 2 2 2 2
J31 = 0 = J32 = J33 = J13 = J23

Jk(tk )

-3

Jll

3
= J21

3

J31

3 3-
J12 J13

3 3
J22 J23

3 3
J32 J33

(B-9)

3 - tan t3 (1
Jll = R 2

2 2
X 1 tan 2 _ 2)[ 1

r 2 R 2 )
0

XlX 2 tan
j3 =

12 R 2
2 +r
0

XIX 3 tan
j3 _

13 R 2

9.
( tan2 r_ ÷ )

12 _"
O

X1X 2 tan3
J21 -

R 2

÷ 2
( r2 R-2)

0

3 - tan/3 (1
J22 = R 2

2tan2_ 2X_X 2

2 R2r
o

3
J23

X2X 3 tan

R 2

2

r
o
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3 XlX3tan_ (tan_22
J31 - R 2 r

O

X2X3tan
j3 _

32 R 2 (R--2+ 2r
o

3 -tan (1
J33 = R 2

Note that the ffil(t _ are symmetric.

2 2X 2
X 3 tan 2/3 - 3)

r 2 R 2
0

The preceding equations provide the complete model for the system. To

accomplish the Monte Carlo simulation, the actual trajectory of the spacecraft

is computed in addition to the nominal trajectory. The initial deviation of the

ensemble with mean zero and covariance matrix M (see (3.3)) is selected
O

using a gaussian random number generator [61].

It is the state of the actual trajectory that is to be estimated. The

measurement data are computed from the nominal and actual trajectories. The

exact measurement values are corrupted by adding at each time numbers from

a gaussian random number generator assuming the ensemble has mean zero

and covariance matrix R k.
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APPENDIX C

GRAM-CHARUER AND EDGEWORTH EXPANSIONS

The Gram-Charlier and Edgeworth [10,23, 39] expansions have been

utilized in Chapter 6 to approximate the a posteriori density function P(Xk/Z _.

The purpose of this appendix is to discuss these expansions and to demonstrate

by example the nature of the approximation of various truncations to some

well-known density functions.

C. 1 FORMAL DEVELOPMENT OF THE GRAM-CHARLIER EXPANSION

Consider a random variable _ with a known density function and let x

be the normalized random variable

_-m
X --

The m and a are the mean and standard deviation associated with _. Denote

the density function for x by f(x) and let *(x) represent the gausstan density

function with mean zero and unit variance.

Consider an expansion of f(x) having the form

C

f(x)= Co*(X)+ Cl,'(x)+ T.,2,"(x)+ ... (c.i)

where ,(k)(x)is the kth derivative of , and the ck are the constants. The

derivatives ,(k)are related to the Hermite polynomials according to [i0]

2

t_'d_ne -x2/2 = (-1)nHn(x)e-X /2 (C. 2)

The Hermite polynomials satisfy the orthogonality condition

tz'l mn 2/2dx <i Jr Hm,..,-- n! form n4-_ (x)e-X = = (c.3)0 for m _ n
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Thus, (C. 1) is an expansion in orthogonal polynomials and the ck

determined from the orthogonality condition (C. 3).

and integrate. Itfollows that

ck = (-l)k_o Hk(x)f(x)dx

can be

Multiply f(x) by Hk(X )

(C. 4)

The Hermite polynomials can be established directly from (C. 2).

seen that

H (x) = 1
0

HI(X ) = x

2

H2(x ) = x -1

3
H3(x ) = x - 3x

4

H4(x ) = x -6x+3

5 _ 10x 3 + 15x
H5(x) = x

6_ 15x 4+45x 2_ 15
H6(x ) =x

In general, the polynomials satisfy the recurrence relation

It is easily

Hn+l(X ) = XHn(X)- nHn_l(X)

From the Hermite polynomials and (C. 4), the coeffients are found.

particular, one finds that

C = 1
O

Cl = 0

c2 =0

(c. 5)

In
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_3

C3 = - "-'_"
G

c4 = --4 -3
(T

_5 kz3

c5 = - 5 + 10 3
O" Cr

c6 - 6 - 15 -_
G G

+ 30

The _k

The coefficients ck

by Stratonovtch [ 57,58 ].

are the central moments associated with the random variable _.

have been designated by the name "quasi-moments"

It is interesting to observe that c I and c2 are

identically zero and that the first k quasi-moments are completely determined

by the first k central moments. The central moments have a more commonly

understood significance, and they are dealt with in the text rather than the ck.

The Edgeworth expansion is closely related to the Gram-Charlier, but

its derivation is somewhat more involved. It arose from considerations relat-

ing to random variables _ which are given as the sum of n random variables

= _1+_2 +''" +_n

According to the central limit theorem (with the suitable restrictions),

the _ should be approximately gaussian when n is large. In this case, tt is
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desirable that all terms of the same order in n be included when the expansion

is truncated. It was found that under this constraint, the expansion for the

normalized variable x is

f(x) = ,(x)

1 c3,(3) (x)+ 3!

1 + 10 c23,(6)(x)+ c4'(4)(x)

1 35 280 c33¢(9)+ _.v c5'(5)(x) +_-.v c3c4_/(7)(x) +-_".v (x)

+ .... (C.6)

where terms of the same order in n are stated on the same line. The details

regarding the derivation of (C. 6) shall be omitted.

The Gram-Charlier and Edgeworth expansions can be written in terms

of the characteristic functions of f(x) and ,(x). Let _0(s) be the characteristic

function of f(x)

 o(s) =  ®eiSXf(x)dx

The Fourier transform of the derivative of a gaussian density is given by

ffeiSX_(k)(x)dx = (-is)ke -s2/2 , k=O,1,...

so the Gram-Charlier expansion becomes

m

-s2/211 c3 c4c_(s)= e +_., (-is)3+_ (-is)4+...]

(C. 7)

(c.8)
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C. 2 APPROXIMATION OF DENSITIES USING THE EXPANSIONS

In this section we attempt to approximate densities that are distinctly

nongaussian in order to examine the effects of various truncations of the

expansions. First, consider a uniform distribution

p(g) = 12_h
a-h_a+h

Lo elsewhere

The moments of this distribution are known to be

m = a

cr2 = h2/3

_3 = 0 = _5

-- h%

_6 = h6/v

We shall only consider truncations of the expansions that contain at most the

first six moments.

The density for the normalized variable is

( __L_I - d-_'_ _j-_"
f(x) = z4-g' x

0 elsewhere

This density is symmetric about the mean, so the Gram-Charlier and Edgeworth

expansions are identical through the sixth order moments. We shall consider

the following approximations to f(x).

Case 1: f(x) = _(x)
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1 c4_(4)Case 2: f(x) = _(x) +_. (x)

1
Case 3: f(x) = _(x)+_.v c45(4)(x)+ _,vc6'(6)(x)

The data pertaining to these approximations are contained in Figure

(C-I). The important thing to observe about these plots is that Cases 2 and 3

exhibitnegative values for the larger values of x. This is impossible for a

true density, so itsuggests a posslble source of difficultyassociated with the

use of these approximations.

2
The second density to be considered is the X density.

i n/2-1e-X/2 for x > 0
p(_) = 2n/2r(n/2)

0 forx< 0

The moments c_k _ the central moments) of this distribution are known to be

given by

olk = E[_k] = "rl(n+2) .... (n+2k-2)

The central moments are easily determined.

m=n

2 = 2n

_3 = 8n

_4 = 12n2 + 48n

_5 = 160n2 + 384n

_6 = 120n3 + 2080n2 + 3840n
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The density for the associated normalized variable x is

_x+n

" 12n)1/2 (_/-2_ x +n)n/2-1e 2
f(x) = 2n/2I'(n/2)

L °
This density is approximated for two values of n.

the results for n = 1 and Figure C-3 depicts the approximations for n = 4.

These cases are plotted in each of these figures.

1 c3_/(3)(x)Case 1: f(x) = _(x) + 3--

1
Case 2: f(x) = _/(x) + 3"-_c3 _/(3)(x) +_._ c4 _(4)(x)

1 c3_(3)(x) _.tc4_/(4)(x)Case 3: f(x) = _(x) +_.T + +

x> -(n/2) 1/2

x < - (n/2) 1/2

Figure C-2 contains

The latter two have been included because they illustrate the differences

between the approximations provided by the Gram-Charlier and by Edgeworth

expansions. Both of these cases include the fourth order moments, but no

moments of higher order. The Edgeworth expansion is seen to provide a

significantly better approximation in each case.
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APPENDIX D

DERIVATION OF NONGAUSSIAN A POSTERIORI DENSITY FUNCTION

In this appendix equations defining the moments of the most general

a posteriori density function considered in this investigation are derived.

Attention is restricted to scalar plant and measurement equations. The

techniques used in the derivation can be applied to more general density

functions and/or more general system equations (including multidimensional

systems). Increased generality leads only to algebraic difficulties, not con-

ceptual difficulties.

Suppose that the plant and measurement equations are described by

2
xk = fkXk_l + gkXk_1 + Wk_ 1 (D. i)

zk --hk_k+ek_+vk (D.2)

where the additive noise [wk] and Ivk] are white, gaussian sequences. The

initial state x is also gaussian. The system (D. 1) and (D. 2) can be considered
O

to represent the second-order Taylor series expansion of some more general

nonlinear system.

sampling time by

p(_/z k)

where

The a posteriori density shall be approximated at each

kk exp _ 1 2 1 1= _ _k[I+_c3H3¢_)+_.,%H4(_

102. _,
+ _.Tc3n6(_,k) ] (D. 3)

_k-
Pk
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C3 =---_

Pk

'_k

c4 - 4 - 3

Pk

and

H3(_k) =_3k_3_k

4. 6 2
H4(_ =_ k _k + 3

H6(_k) =_k- 15_ +45_k- 1

2
The xk is the mean value and Pk' _k' Vk are the second, third, and

fourth central moments of P(Xk/Z _. Relations defining the moments are

derived below. In the derivation, use is made of general relations between

the moments and central moments of a distribution and also of the special

properties of the moments of a gausstan distribution. Relationships of this

nature are summarized in Appendix E.

D. 1 INITIAL SAMPLING TIME

Since the x is assumed to be gaussian and since a measurement z is
O O

assumed to be available, the initial sampling time is a special case of the

more general results presented in Section D. 3. According to (2.15)

P(Xo/Zo) = P(Zo/Xo)P(Xo)

J'p(zo/Xo)p (Xo)dx°
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From (D. 2), it is true that

k
1 (Zo - hoXo - ex2)2

exp - 2
r

o

2
1 (Zo - hoXo)

= kv exp - _ 2
r

o

2
1 (-2e zxO0 0

exp - _'

x 3 2 4e ÷+2ho o o eoXo)

2
r

o

It is necessary to approximate the second exponential. Let

2
ez he e

I_ oo 2 oo 3 o 4
2 x -_x -_xB(x°) - r r 2r 2o 2 o o

0 0 0

(D. 4)

and let

e z
Df o o

b2 - 2
r

0

h e
Df o o

b3- --7-
r

o

2
e

IX o
b4 = _--

2r 2
O

Before dealing further with the second factor, let us form P(Xo/Zo).

Df 1
k t =

O fp(Zo/Xo)P(Xo)dXo

Let
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Then,

x -a z -hx
1 ---o 2 1 o o O)2ex p

P(Xo/Zo) = k'k k exp - _ -m¢-"_---) exp - _ ( 2 B(Xo)
OVX 0 r

• o

Combining the two gaussian terms and completing the square, one gets

P(Xo/Z o)

2 ^2

1 a 2 z 1 o
_o_ )exp-_(= k'k k exp-_(---_+ 2

ovx m r _ o
0 0 o

_°)2exp B(Xo)

where

h2
1 o 1

2 2 2
r m

o o o

h z

2( 020_o = _o _ +-_a2)
r m

0 0

and 2
The _o o

were linear.

would be the conditional mean and variance if the measurements

The factor exp B(x o) then serves as a correction to the linear

results.

Now, rewrite B(x o) in terms of the variable _o' That is, let

_A÷_A÷_,X'o: _o÷_,Xo-_o)÷_._(Xo-_o)_

+_3_(_o-_o)3+_4_(Xo- _o)4

The values of the fit that satisfy the equality are easily determined to be

_._o ^_o'_Yofll = + 3b3_ +
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^ ^2
821 = b 2 + 3b3_ o + 6b4_ °

A

_31 = b3 + 4b4_o

_41 = b4

The constant _o can be considered separately. Define BI(_ o) as

2 3 4
Bl(_o) =Df _1_] ° + _21_ ° + _31rio + _41t]o

where

_o Xo o

Now, let us approximate exp Bl(_o ) by a power series. Then,

1. Sl(rlo) ]2 3exp BI(_o) = 1 + BI(_o) + 21 [ + °[BI(_o)]

Terms of greater than second order shall be neglected. Let

B2(_o) Df 1 ]2= _[B!(r_ o)

2 3 4 5 6 7
= /_22rlo + _32r]o + _42r]o + _5r]o + _6_o + _7r]o

where

_22 = ,8 /2

Df
_32 = _1_21

Df 2
= ( 21

Df

+ 2 i 3 )/2

(D. 5)
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_6 Df= (/331+2 2921fl41)/2

_7 Df= _31/341

Thus,

P(Xo/Zo).- = k'k kovx

1 2 z 2 _2

exp- o o2-2 )
m r

o o o

1 rlo. 2

eXPgoeX p - _ (_--) [i +Bl(rlo) +B2(_]o)]
o

The constant [k k exp - 1/2 (a /m ° + z /r - /_ )exp 9o ] will be cancelledv x

by the corresponding term in o_P(Zo/Xo)P(Xo)dX o. Define the constant ko to be

k
o

2 z 2 _2
1 a + o o

= k'k k exp-_( ) exp9 °ovx 2 2 2
m r

o o o

1 1

=
O O

-- J'exp - _ (_--_°)2 [ 1 + Bl(_o)+B2(rlo) ] drlo]
O

-1

Note the change of variable for the integration. Thus

1 1
k

O 1 + E[B1] + E[B2]

and

1 [4_-_rr exp-_ [i+Bl(_o)
P(Xo/Zo) = I+E[BI] +E[B2] o o

+ B2(rlo)] ]

(D.6)
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The expected value is obviously taken relative to the gaussian density

11,/_:'rr° exp- 112('nolrro)2.

To cause P(Xo/Zo) to assume the form prescribed by (D. 3), determine

the moments E [r_1o/Zo]

^ i ^ i

E [(x° - _o) /Zo] = _(x° - _o)P(Xo/Zo)dX °

i

I E_r_1fE_+_oBi%)
1 + E(B1) + E(B2) n°

i 1 _o)2+ _oB2(_o ) ] exp - _ d_o]
O

• i E [ _ioB2(r_o ) ]i Z[_o] + E [_oBl(_o) ] +
= (D.7)

E [_o/Zo] 1 + E[BI] + E[B2]

The expectations indicated in (D. 7) are easily determined.

E[B1] = E[fil,'qo+fi21_2o+fi31_3o+fi41v_4 o]

2= fl21rr ° + 3fl41_

3 4 5 6 7 8
E [B2] = E [f122rlo2 + f132rlo + _42rlo + fl5rlo + fl6rlo + _7_o + f18_o ]

= + + ÷

This follows from the fact [10] thatfor a gaussian variable rl°with

mean zero and standard derivation rr
o

0 , t=1,3,5,...
E[_io] =

(t-1) n i , i=2,4,6,...
O
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The E [_oBl(_o ) ] and E [_ B2(_o) ] are determined in the same manner.

The central moments can be determined directly from the E [_o/Zo].

For example,

By definition,

SO

E[no/Z °] = E[(x o- _o)/Zo]

^ /Zolx = E[x °o

= E [Xo/Zol - _o

= _ + E[_o/Zo] (D.8)
O O

Thus, the E (_o/Zo) provides a correction to the conditional mean obtained from

the linear density.

But

The variance is determined by considering the second moment.

E[rl2/Zo I = E[(x ° - _o)2/Zo ]

E [[(xO ^ ^ - ^ 2/z O]= _xo)+ (xo _o)]

= E[(Xo - Xo)2/Zo ] + 2E[(Xo - Xo)/Zo ](Xo - _o) + (Xo - _o)

E[Xo-Xo/Zo ] = Xo- _o = 0.

A

o- _o = E[_o/Zo]

and
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SO

2 Df _o)2/Zo]Po = E [(x° -

= E[T]_/Zo] - E2[_o/Z o] (D. 9)

The third and fourth central moments are found in the same manner and are

given by

_o = E[(Xo - Xo)3/Zo ]

/Z -
= E[_]o o] 3E[_]o/Zo]Po2 E3[_o/Z o]

_o = E[(Xo - Xo)4/Zo]

= s[_/Zol-4%zE_o/Zo]-6p2oZ2E_o/-o]-_4[no/,oi

This completes the derivation of the moments for the first sampling time.

D. 2 THE PREDICTION DENSITY P(Xk/zk-1 )

The density P(Xk/zk-1), according to (2.13), is given in general by

p(xk/,k-:fp(xk_/zk

(D. 10)

(D. Ii)

It is necessary to proceed carefully in determining this density.

if one attempts to establish k-1P(Xk/Z ) directly from the formula, it becomes

apparent that one is led to a hopeless morass of algebraic manipulation. On

the other hand, it has been pointed out that the object of the approximation

procedure is to determine the moments of the distribution. That is, it is

In particular,

desired to determine

E[4/zk-1 ] = jxkP(Xkri /zk-1_)dXk (D.12)
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This can be written as

i- k-i

E [Xk/Z ]

i k-i

: ;xyp%_/_ )p%/xk____ _

Iterating the integrals, this becomes

i- k-1 k-1 i
Etxk/_ I : ..TP(Xk_/_')t;j'xkp(xk/xk_l)<'_b/;tds<_l

The innermost integration can be easily accomplished because of the assump-

tions on the plant. Consider the mean value.

2

1 xk - (_xk-1 + gkxk-1) leixl<
EtS</___.l : k i'xk exp -'_ [ qk-1

It follows immediately that

Thus,

2

Et_k/xi<-_l : _xk-1 + gks<-i

E [Xk/zk-i ]

k-i

From the definitionof P(Xk_i/z ),

EiXk/zk-li : __l+

Df ,,

: _/k-1

2 k-i
: ,f_fkxk-_+gkXk-1)P%-i/_)<5<-1

one obtains immediately

2 ^2

gk(Pk_l + Xk_ I)

Continue in the same manner to determine the higher order moments.

2 2 2 2
E[xk/xk-l] : %-1 + (f'kxk-:l.+ gkxk-1)

and so

2. k-i 2
E [XklZ ] = qk-i +

(D. 13)

Thus,

2 k-i
_E[Xk_l/z I+2_E 3 /k-1 2E 4 /_k-1lXk_1 _4"g k [Xk_1 ]
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By definition, one sees that

2 • k-1 2 ,,2
E[Xk_i/z ] = Pk-i + Xk-I

3 , k-1 ,, 2 <E[Xk-1/z ] = t_k-1 + 3Xk-lPk-1 + -1

4 k-1 ^

E[xk-1/z ] = _k-I + 49'k-1t'Ik-1

The conditional variance is given by

2 = E[x_/zk-l], 9_/k_ 1Pk/k-1

_^2 2 ,,4

+ UXk-lPk-i +-kx-1

After some manipulation, this is found to be

2 2 ,, .22
Pk/k-I = qk-i + (fk+ 2gk Xk-l) Pk-i

2 4

+ 2gk(fk + 2gk%-l)_k-i + gk(_k-1 - Pk-_

The third order moment is found in a similar manner.

3, ^2 .

SO

2 2 3
+ gkXk_l )+ (fkXk_l + gkXk_l )

(D.14)

3.k-i 2 ^ 3 3 k-1 4 k-I
Et_R/" I = 3%_iXk/k_I+_Z[_R_/" I+3{gkZrXk_/Z]

+ . /zk-1[Xk-i/z ] + gk [Xk-1 ] (D. 15)

i.. k-i

The firstfour moments E [Xk_l/Z ] (i= 1,2,3,4) are known from the

determination of P(Xk_l/zk-1 ) and are used in the coefficientsof the Edgeworth

expansion. At the time that these moments are established, itwould also be

possible to determine as many of the higher order moments that are required

to define P(Xk/zk-i ). Alternatively, one could view the truncation of the
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Edgeworth expansion as implicitly requiring that the higher order moments

be the same as the basic gaussian density. Then,

_5 = _t7 = 0

6

_6 = 5Pk-1

8

_t8 = 7Pk_ 1

This assumption will be used here. Then,

[ 5 /zk-1] = " 10^3 2 ^5xk_I _-i"k-i+i°_-i_k-i+ _k-lPk-1+_-i

6_ = 5Pk_ 1

^4 ^6
+15_k_iPk-1+_-1

2" ^5 2 ^7+ __iPk_1+h_-1

[ 8 /zk-ll 8 + 70Xk_l_k_l + 56 _l_k_l
E Xk_ I = 7Pk_1 + 140 _ip -i

28 ^6 2 ^8
+ Xk_iPk_l + Xk-1

The third central moment is related to the E [x_/z k-l] according to

3- k-i 2 ^3

_k/k-I = E(Xk/Z ) - 3Xklk-lPklk-i- Xklk-i

The analytic expression for the _k/k-i shall be derived for future reference.

It is not necessary since (D. 15), (D. 16) and the relations for the moments

E [X__l/zk-l] can be used to determine _k/k-l"
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In particular, after considerable manipulation, one finds

2 ^ 4 ^ _^2 2

+3%gk(1_-iPk-1-xk-_k-1-6xk-1%-i-2Pk-i_-2

3 6 + 4 ^2 2 2+gk(Tpk_l33Pk_lxk_l- 3Pk_pk_l-12___pk_1__1

The fourth order moment is determined from

4/EEXkXk-11=3q__l+6(_kxk_1+ 2 2 2 2 4gk_k-1_ qk-1+(_kXk-1+gkXk-1)

Thus,

E (x_/z k-1 )

(D. 17)

4 4 k-1

3 7 k-1 4 8 . k-1
+ 4fkgkE (Xk_l/Z ) +gkE(Xk_l/z )

The fourth central moment is determined from E(x_/z k-l)

_^2 2 ^
_k/k-1=_.(_l_k-1)_4_/k_1_/k_1__/k_lpk/k_1__Ik-1

(D. 18)

(D. 19)

Equations (D. 18) and (D. 19) serve to define Vk/k-l"

This completes the derivation of P(Xk/zk- _. Recall that the only approxt-

mation is in the number of terms retained in the expansion and in the moments

of greater than fourth order.
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D.3 THE GENEP_LRELATION FOR P(Xk/Zk)

The general relations for the moments of P(Xk/Z _ are derived in a

k-1
manner similar to that utilized in Section D. 1. The density P(Xk/Z ) has the

form given by (D. 3) rather than the gaussian P(Xo), so the derivation is some-

what more complicated algebraically.

Let

According to (IV), the P(Xk/Z_ is described by

P(Xk/zk-1) p(zk/xk)

p(zk/zk-1 )

Df 1

k_- p(zk/zk_l)

Then

1
P(Xk/zk ) = kl_kk/k_lkv exp - _(

2
Zk - kkXk - ekXk 2 1 2

rk ) exp - _(_k/k_l)

where

1 1 + i0 2
[i + _, c3H3(_.k/k_l} + _.,c4H4(_k/k_ I) _.,c3H6(_k/k_ 1)

(Xk-
Ck/k_ =

Pk/k-1

This can be rewritten as

(D. 20)
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e

A

i xk/k-i

Pk/k-i

zk

+-_--_)
rk _k

exp-_ TTk )2[i + Bl(_k ) + B2(_k)]

where

[i+'_.,OsHs('qk)+_c4H4<'qk)i02+_-.I c3H6(T _ ]

i h_ i
- ÷

2 2 2

TTk rk Pk/k-i

(D. 2i)

A

_. )
rk Pk/k-I

The Bl(_]k) and B2(r _ are defined in the preceding section with the trivial

change of subscript. The Hermite polynomials can be rewritten in terms of

the variable

First, the Hermite polynomials can be written as

H3(C,k/k 1) = s- O

H4(Ck/k_ 1) = do

H6(Ck/k 1) = e- O

2 3

+sixk +s2xk +SaXk

+ dlX k + d2x_+ d3x_+ d4x _

+elx k+e2x k+e 3 +e 4 +e5x k+e6x k
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where

S
O

^3

Df xk/k-__3_k/k-1_
= -( 3 Pk/k-1

Pk/k-i

^2

Df _ 1

s 1 3( 3 Pk/k- 1
Pk/k-1

A

s2 = -3 3'

Pk/k-1

Df 1

s3 = 3

Pk/k-1

and

d
o

^4 ^2

Df __6 _ +3
4 2

Pk/k-1 Pk/k-1

d 1

^3 ^

Df-4( 4 - 2

Pk/k-i Pk/k-i

^2

d2 = 6( - 2 ')

Pk/k-1 Pk/k-i

d3 --17_4-_4

Pk/k-1

Df 1
d4 - 4

Pk/k-1
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and finally,

e
o

Df

^6 ^4 ^2

Xk/k-i - i5 Xk/k-i + 45 Xkfk-i
6 4 2

Pk/k-I Pk/k-i Pk/k-i

- 15

eI

,,5

6

Pk/k-i

A3

_ 10 -_-:._ + 15 _/k-I )
4 2

Pk/k-I Pk/k-i

^4 ^2

e 2 = 15( -6 +3 2 )

Pk/k-1 Pk/k-I Pk/k-i

e3

^3

Xk/k-i _ 3_--._)-20( 6 4
Pk/k-i Pk/k-i

e4

Df

.,2

Xk/k-__41-_---)is( 6

Pk/k-i Pk/k-1

e 5

^

_Dr 6 _k/k-_
6

Pk/k-i

1

e6 - 6

Pk/k-1

These polynomials are to be rewritten as

, 2H3(_k) = *o + *l_k + 2_k + *3_

H4(_k) = 5 +51_k+52r_+53_+54r_
O

H6(_k) = co

2 3 4 5 6
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The coefficients that satisfy the equality are found to be

_o_So÷_*__÷ s_
^2

_1 = Sl ÷ 2S2_k ÷ 3s3_I_

_2 = s2 + 3S3_k

_3 = s3

50 0 k

51 = dl + 2d2_k + 3d3 + 4d4

52 = d2 + 3d3_k + 6d4_

^

= d 3 4d4_ k53 +

6
4

E
0

E
1

E
2

E3 =

E4 =

5

d 4

e +el_ k+e 2 +e 3 + +e 5 +e 6
0

e_÷_e_÷ _o_÷ _e_÷_e_÷ 6o6_
e_÷_e_÷6o_÷_Oe_÷_Oeo_
o_+_e_÷_0o_÷_Oeo_
e 4 + 5.5_ k + 15e6 _2

e 5 + 6e6_ k

E6 = e 6
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c"

Let

Df
k --

0

^ 2 _2
i Xk/k-1 Zk k

k_kvkk/k_ 1 exp - _ (2 + -2 - --2) exp _o

Pk/k-i rk Wk

1 1

0 O

1 (_k)211+ B1
2exp - 2 _k + B2]

1 10 -1
+r., + +r.' l

Then,

k) 1p(xklz =
+ 1 +I I0 2

E{[I+B l+B21[I _'!c3H3 _.vc4H4+_'!c3H6]]

i

O

1 (_k)2 [I+B 1
"_exp - _ _k + B2I

1 1 +10 2
[I+_Ic3H3+_.vc4H4 _.v c3H6]] (D. 22)

The moments E [_/z k] are computed in a straightforward manner. The

products of the polynomial terms appearing in (D. 22) are required. These

products are stated below for reference.

BIH 3 = So_l_ k + (So_21 + Slfll)_ + (So_31 + Sl/321+ S_l) _

6 7

+ (s?41 + s3f131)_ k + s3f141_ k

BIH 4 = dofll_ k + (doff21 + dlfll) _ + (doff31 + dlf121 + d2fll) _

4
+ (doff41+ dlfl31+ d2_21 + dsfll)_k + (dlfl41+d2fl31+d3fl21+d4/_l)_

+ (d2f141+ d3f131+ d4f121)'r_+ (d3f141+ d4f131)_l_+ d4f141B_
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B1H 6

B2H 3 =

B2H 4 =

_leo_k+ (_lel+fl21eo)_ + (_le2+_21el+fl31eo)r_

+¢1e3 + 2 e2 + 31el + 41eo) +¢1 4 + 2 e3 + 31e2

+ (_1e5 +f121e4 +f131e3 +f141e2)_ + (_le6 +f121e5 +f131e4 +fl4e3)r_

+ _821e6 +#31e5 +#41e4)_ + _31e6 +#4e5)_ + _41e6_ 0

s#22_ + (Slf122 + Sof132)_ + (Soft42 + Slfl32 +S 2_22 )lq4k

+ (So_5 + si_42 + S2f132+ s3f122)_ + (Soft6+Slfl5+ S2_42 + S3f132)+_

+ (Soft 7 +s i_6+ s2_ 5+ s3f142)_ + (Soft8 + Slfl7 + s2f16 + s3f15)_

ii
+ (Sl_8+s2_ 7+ s3_6)_ + (s2fl8 + s3f17)_O + s3flSr _

do_22_+ (do_32 + dlf122)_ + (do_42 + dlf132+ d2f122)_

+ (d°_5 +dlf142+ d2f132+d3f122)_ + (do_6+ d1_5+ d2_42+d3f132+ d4f122)_

+ (do_7+dlfl6+d2f15+d3_42+ d4_32)_ + (do_8+ dlfl7+d2f16+d3f15+d4_42)_

+ (dlfl8+ d2f17 + d3f16 + d4fl5)r_+ + + 10(d2fl 8 d3fl 7 d4fl6)rlk

12
+ (d3f18+ d4f17) r_l+ (d4f18) rtk

eof122_+ (e 1_22+ eo_32) r_+ (eo_42+ e 1_32+ e2_22) _

eft ,6+(e°_5+e1/_42+e2f132+e3f122)r_+(eo_6+el_5+e2_42+e3_32 + 4 22)_k

+ (eo_ 7+ e1_6+ e2_5+ e3_42+ e4f132+e5f122)r_

+ (eofl8+ e 1_7 +e 2fl6+ e3_5 +e4 _42 +e 5fl32 +e 6fl22)_

+ (elfl8+ e2f17+ e3f16+ e4f15+ e5f142 + e6f132 ) v_

10 11
+ (e2f18+ e3f17+ e4_6+ esf15+ e6f142)rl k + (e3_8+ e4f17+ esf16 + e6_G)rl k

12 13 14
+ (e4fl8+e5fl7+e6_6)rlk + (e5_8+e6fl7)Vlk +e6fl8rl k

%

224



After the moments E [r_/zk]t (l = 1, 2, 3,4) have been computed, the central

moments required for the Edgeworth expansion are computed from (D. 8)

through (D. 11) with the obvious change of subscript. This completes the

derivation.
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APPENDIX E

MOMENTS OF A DISTRIBUTION

The relation between the moments and the central moments are presented

in this appendix to provide a convenient reference. The central moments

through the twentieth are included.

5.1 MOMENTS OF A GENERAL DISTRIBUTION

Consider a random variable _ with finite moments of all order. The

central moments are related to the moments according to the following

schedule.

= a

E[(_ - a) 2] (y2

E[(_-a) 3] __Dr

E[(g - a) 4] =

E[(_-a) 5] __Dr

E[(_-a) 6] Df

E[(_ - a) 7]

E[_ 2] - a 2

U3

E[_ 3] - 3a 2
3

-a

%

E [_4] _ 4ala 3 _ 6a2o.2 _ a 4

U5

E[_5] _ 5ma4 _ 10a2 3 _ 10a3 2 _ a 5

= E[_ 6 ] - 6a_ 5 - 15a21.t4 - 20a31_3 - 15a 42 _ a 6

Df

E[_ 7 ] - 7al_ 6 - 21a2_5- 35a3bL4 - 35a41j3 - 21a 52 _ a 7
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E[(_ - a)8] =Df

E[(_ - a)9]

%

= E[_8I - 8a_ 7 - 28a2_6 - 56a3_5 - 70a4_4

_56a5_3 - 28a6_ 2 _
a 8

Df
= _9

= E [_9] _ 9sP8 _ 36a2_7 _ 84a3_6 _ 126a4_5

- 126a5_4 - 84a6_3 -
36aTff 2 a 9

E[(_ - a)II] =Dr

E[(_ - a)121 =Dr

E[(_ - a) 14] =Dr

_i0

E [_i0] _ 10a_ 9 _ 45a2_8 _ 120a3_7 _ 210a4_6

- 252a5_5 - 210a6_4 - 120a7_3 - 45aSff2 _ aI0

_11

E[_ 11] - lla_10 - 55a2_9 - 165a3_8 - 330a4_7 -462a5_6

- 462a6_5 - 330a7_4 - 165a8_5 - 55a9c 2 _ a ll

_12

E [_12] _ 12_lla _ 66_10 a2 _ 220_9a

- 792_7 a5 - 924_6 a6 - 792_5 a7

220_t3a9 66_2a10 12

3 4
- 495_8a

8

- 495_4a

_113

E[g 13] - 13_12a- 78P.ll a2 - 286_10 a3 - 715_.9a4

- 1287_aga5 - 1716_a7a6 - 1716_6 a7 - 1287_t5a8

715_t4a9 286_3 al0 78_2 all 13

_14

E[_ 14] - 14_13a - 91_12 a2 - 364_11 a3 - 1001_t104

- 2002_9 a5- 3003_8a 6 - 3432_t7a7 - 3003_t6a8

- 2002_5 a9 - 1001_4 alO - 364_t3all - 91_2 a12

14
-a

e
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= _.5 2 455_12a3 - z365_zl 4
= z[_zsl - 15_.l_a- xos_13a -

5_ 5oo5_.96 - 6435_.8aT- 6435_ as
- 3003_tlOa 11 12

9 3003_t5#0 - 1365_4a - 455_3a
.5005_.6a -

13 15

_ 105_2a - a

4

_16 2 _ 560_.z3a3 - is2o_12a
z[_161 z6_5a- _2o_14a s

- 7 12870_8a
5 6 11440_9a -

- 4368_tlla - 8008_i0 a -
I0 Ii . 1820_t4J2

9 _ 8008_6a - 4368_5a
_ 11440_a

2 14 16
13_1206 a -a

- 560_3a

4

E [_171 17_16 a - 136_tlSa " 680_t14a- "I 8

5 _ 12376_tll 6 - 19448_tlOa - 24310_9a
_6188_tlZa 12

9 i0 _ 12376_6 a11 - 6188_5a

14 _ 136(_ a

_ 2380_4 a13 - 680_3a

a)_Sl D_Z [(_- =

4

_18 Z 3 3060_14 a

E [_18 ] _ 18_1_a - 153_16 a - 816_15a "
6 '7

5

8 486g0_9 9 - 43"_58_8a
- 43758_t10a - 13

12

1E 18 564_6a - 8 568_5a
_ 318_4_a - 18

14 15. 153_a 16 -a
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$

E[(_ - a)19] D_ _19
2 3 4

E[_ 19] - 19_19 a - 171_t17a - 969_16 a - 3876_15 a

5 6 7

_11628_14a - 27132_13a - 50388_t12a

8 9 10
- 75582_11a - 92378_10 a - 92378_9a

11

- 75582_8a

14
- 11628_5a

12 13

- 50388_7a - 27132_t6a

15 16

- 3876_4a - 969_3a

1712a 17 19-- -- a

E[(_ - a)2°] Df

=

_20

E [_20] _ 20_19a_ 190_18 a2 _ 1140_17 a3 - 4845_16 4

- I5504_15 aS- 38760_14 a6 - 77520_13 a7

8 9 10

- 125970_12 a - 167960_11 a - 184756_10 a

11 12 _ 77520_7 a13

15 16
- 167960_9a - 125970_8a

14 _ 4845_4 a- 38760_6a - 15504_5a

17 _ 190a2a 18 _ a 20
- 1140_a

E.2 MOMENTS OF A GAUSSIAN DISTRIBUTION

The central moments of a gausstan distribution have the properties that

_i = 0 , i=3,5,7,9, ....

_i --(i- i)_, i _ 4,6,s,...

Thus, the relations of the preceding section can be simplified for this distribu-

tion. These relations shall be stated explicitly below because they are of

considerable importance in the approximations presented elsewhere in this

document.
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Let _ be a gaussian random variable with mean value a and variance (r 2.

s[_] =

s[_ 2] =

E[_ 3] =

E[_ 4] =

E[_ 5] =

E[_ 6] =

E[_ 7 ] =

E[g 8] =

E [_91 =

E[g I°] =

El{ II] =

E[_12] =

E[_ 13]

E [ _141

E[_ 16]

a

2 2
O" +a

a(3ff 2 + a 2)

34 + 6a2(r 2 + a4

a(15 + 102a2+ 4)

5(76 + 454a 2 + 15a2a 4 + a 6

a(356 + 105o-4a2 + 812a 4 + a6)

7 8 + 1406a 2 + 2104a 4 + 280"2a 6 + a 8

a(63 8 + 4206a 2 + 3784a 4 + 362a 6 + a 8)

90 .10 + 3150-8a 2 + 10500.6a 4 + 6304a 6 + 45cr2a 8 + a 10

a(99(r 10 + l155q8a 2 + 23106a 4 + 9904a 6 + 55(r2a 8 + a 10)

11(y 12 + 594(rlOa 2 + 34658a 4 + 46206a 6 + 14854a 8

+ 66_2a 10 + a 12

a(1430 "12 + 25740"10a2 + 90098a 4 4-85800"6a 6 + 21450"4a 8

+ 780.2a 10 + a 12)

130 "14 + 10010"12a2 + 90090"10a4 + 210218a 6 + 150150 "6a8

+ 3003o-4a 10 + 912a 12 + a 14

a(195o "14 + 50050.12a2 + 270270.10a4 + 450450.8a 6

+ 25025O-6a 8 + 40950.4a 10 + 1050-2a 12 + a 14)

15o -16 + 1560o.14a2 + 200200r12a4 + 72072o.10a6

+ 900908a 8 + 400406a 10 + 54604a 12

+ 1202a 14 + a 16

231



a(255_16 + 88400.14a2
+ 680680.124 + i75032(_10a6

+ i701700.8a 8 + 61880O-6a 10 + 7140a4a 12

+ 1360. 214 + a I6)

170 "18 + 22950.16a2 + 39780(714a4 + 204204(r12a6

+ 393822fflOa8 + 306306G8a 10 + 92820Cr6a 12

+ 91800.4a 14
+ 1530.2a 16 + a 18

a(323Cr 18 + 145350.16a2 + 151164Cr14a4 + 554268(_12a6

+ 8314020.10a8 + 529074ffSa 10 + 135660(_6a 12

+ 116280.4a 14
+ 171a2a 16 + a 18)

19or 20 + 3230Cr18a2 + 726750.16a4 + 503880(714a6

+ i3856700.12a8 + 1662804GlOalO + 881790_8a 12

+ 14535o.416 + 1900. 218 + a 20
+ 193800G6a 14

e
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